• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On the solution of the radical matrix equation $X=Q+LX^{-1}L^T$

Benner, Peter, Faßbender, Heike 26 November 2007 (has links) (PDF)
We study numerical methods for finding the maximal symmetric positive definite solution of the nonlinear matrix equation $X = Q + LX^{-1}L^T$, where Q is symmetric positive definite and L is nonsingular. Such equations arise for instance in the analysis of stationary Gaussian reciprocal processes over a finite interval. Its unique largest positive definite solution coincides with the unique positive definite solution of a related discrete-time algebraic Riccati equation (DARE). We discuss how to use the butterfly SZ algorithm to solve the DARE. This approach is compared to several fixed point type iterative methods suggested in the literature.
2

On the solution of the radical matrix equation $X=Q+LX^{-1}L^T$

Benner, Peter, Faßbender, Heike 26 November 2007 (has links)
We study numerical methods for finding the maximal symmetric positive definite solution of the nonlinear matrix equation $X = Q + LX^{-1}L^T$, where Q is symmetric positive definite and L is nonsingular. Such equations arise for instance in the analysis of stationary Gaussian reciprocal processes over a finite interval. Its unique largest positive definite solution coincides with the unique positive definite solution of a related discrete-time algebraic Riccati equation (DARE). We discuss how to use the butterfly SZ algorithm to solve the DARE. This approach is compared to several fixed point type iterative methods suggested in the literature.

Page generated in 0.1294 seconds