• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 6
  • 5
  • 1
  • 1
  • Tagged with
  • 24
  • 24
  • 24
  • 8
  • 5
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Étude de la dynamique plasma dans la filamentation laser induite dans les verres de silice en présence de rétrodiffusion Brillouin stimulée et dans les cristaux de KDP / Study of a dynamical plasma response in laser filamentation induced in silica glasses in presence of stimulated Brillouin scattering and in KDP crystals

Rolle, Jérémie 26 September 2014 (has links)
Dans cette thèse, nous étudions l’influence d’un plasma non-stationnaire produit par des impulsions laser en régime d’auto-focalisation. Cette auto-focalisation est couplée à des non-linéarités Brillouin pour des impulsions nanosecondes dans les verres de silice. Elle excite différents canaux d’ionisation dans les cristaux de KDP irradiées par des impulsions femtosecondes. Tout d’abord, nous dérivons les équations de propagation des ondes optiques laser et Stokes sujettes à la filamentation due à l’effet Kerr, la rétrodiffusion Brillouin et à la génération de plasma. Dans une deuxième partie, nous présentons des résultats numériques sur la propagation non-linéaire de faisceaux LIL. Ceux-ci révèlent l’importance de la distribution temporelle de l’impulsion pompe dans la compétition entre auto-compression Kerr et la rétrodiffusion Brillouin stimulée. Ces simulations préliminaires permettent de valider le système anti-Brillouin opté pour le LMJ sur la base de faisceaux millimétriques.Dans une troisième partie, nous présentons des résultats théoriques et numériques sur la filamentation d’impulsions nanosecondes opérant dans l’ultraviolet et l’infrarouge. L’influence d’un plasma inertiel sur la dynamique de couplage de deux ondes en contre-propagation est examinée. Dans une configuration à une onde, une analyse variationnelle reproduit les caractéristiques globales d’un équilibre quasi-stationnaire entre auto-compression Kerr et défocalisation plasma. Toutefois, cet équilibre cesse pour faire place à des instabilités modulationnelles induites par rétroaction du plasma sur l’onde de pompe. Nous montrons que des modulations de phase supprimant la rétrodiffusion Brillouin permettent d’inhiber ces instabilités plasma. La robustesse de ces modulations de phase est testée en présence d’un bruit aléatoire dans le profil de  l’impulsion laser.Enfin, nous étudions numériquement la dynamique non-linéaire d’impulsions femtosecondes se propageant dans la silice et le KDP. Premièrement, nous montrons que la présence de défauts impliquant moins de photons pour exciter un électron de la bande de valence à la bande de conduction promeut des intensités de filamentation plus élevées. Ensuite, nous comparons la dynamique de filamentation dans la silice avec celle dans un cristal KDP. Le modèle d’ionisation pour le KDP prend en compte la présence de défauts et la dynamique électrons-trous. Nous montrons que la dynamique de propagation dans la silice et le KDP présente des analogies remarquables pour des rapports de puissance incidente sur puissance critique équivalents.La conclusion nous permet de résumer les résultats originaux obtenus dans le cadre de cette thèse et d’en discuter des développements ultérieurs possibles. / In this thesis, we study the role of an inertial plasma reponse produced by laser pulses in self-focusing regime. Self-focusing is coupled with Brillouin nonlinearities for nanosecond pulses in silica glasses. For femtosecond pulses propagating in KDP crystals, self-focusing excites various ionization chanels. First of all, we derive the propagation equations for the pump and Stokes waves, subjected to filamentation due to optical Kerr effect, stimulated Brillouin scattering and plasma generation. In the second part, we present numerical results on the nonlinear propagation of LIL laser beams. These results show that temporal distribution of the pump pulse play a key role in the competition between self-focusing and stimulated Brillouin scattering. These preliminary results valide the anti-Brillouin system opted on the MegaJoule laser (LMJ) on the basis of milimetric-size laser beam.In a third part, we present numerical and theoretical results on the filamentation in fused silica of nanosecond light pulses operating in ultraviolet and infrared range. Emphasis is put on the action of a dynamical plasma reponse on two counterpropagating waves. For a single wave, we develop a variational analysis which reproduces global propagation features for a quasistationary balance between self-focusing and plasma defocusing. However, such a quasistionary balance ceases to clean up modulational instabilites induced by plasma retroaction on the pump wave. We show that phase modulations supress both simulated Brillouin scattering and plasma instabilities. The robustness of phase modulations is evaluated in presence of random fluctuations in the input pump pulse profile.Finally, we study numerically the nonlinear propagation of femtosecond pulses in fused silica and KDP. First, we show that the presence of defects involving less photons for exciting electrons from the valence band to the conduction band promotes higher filamentation intensity levels. Then, we compare the filamentation dynamic in silica and KDP crystal. The ionization model for KDP crystal takes into account the presence of defects and the electron-hole dynamics. We show that the propagation dynamics in silica and KDP are almost identical at equivalent ratios of input power over the critical power self-focusing.The summary of this thesis recalls the original results obtained and discusses the possibility of future developments.
22

Uma desigualdade do tipo Trudinger-Moser em espaços de Sobolev com peso e aplicações

Albuquerque, Francisco Sibério Bezerra 14 April 2014 (has links)
Made available in DSpace on 2015-05-15T11:46:17Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 2216718 bytes, checksum: 2b03ed1c154fa751c5c18afd31a144ad (MD5) Previous issue date: 2014-04-14 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / This work addresses a class of Trudinger-Moser type inequalities in weighted Sobolev spaces in R2. As an application of these inequalities and by using variational methods, we establish sufficient conditions for the existence, multiplicity and nonexistence of solutions for some classes of nonlinear Schrödinger elliptic equations (and systems of equations) with unbounded, singular or decaying radial potentials and involving nonlinearities with exponential critical growth of Trudinger-Moser type. / Este trabalho aborda uma classe de desigualdades do tipo Trudinger-Moser em espaços de Sobolev com peso em R2. Como aplicação destas desigualdades e usando métodos variacionais, estabeleceremos condições suficientes para a existência, multiplicidade e não-existência de soluções para algumas classes de equações (e sistemas de equações) de Schrödinger elípticas não-lineares com potenciais radiais ilimitados, singulares na origem ou decaindo a zero no infinito e envolvendo não-linearidades com crescimento crítico exponencial do tipo Trudinger-Moser.
23

Etudes expérimentales et numériques des instabilités non-linéaires et des vagues scélérates optiques / Experimental and numerical studies of nonlinear instabilities and optical rogue waves

Wetzel, Benjamin 06 December 2012 (has links)
Ces travaux de thèse rapportent l’étude des instabilités non-linéaires et des évènements extrêmesse développant lors de la propagation guidée d’un champ électromagnétique au sein de fibresoptiques. Après un succinct rappel des divers processus linéaires et non-linéaires menant à lagénération de super continuum optique, nous montrons que le spectre de celui-ci peut présenterde larges fluctuations, incluant la formation d’événements extrêmes, dont les propriétés statistiqueset l’analogie avec les vagues scélérates hydrodynamiques sont abordées en détail. Nous présentonsune preuve de principe de l’application de ces fluctuations spectrales à la génération de nombres etde marches aléatoires et identifions le phénomène d’instabilité de modulation, ayant lieu lors de laphase initiale d’expansion spectrale du super continuum, comme principale contribution à la formationd’événements extrêmes. Ce mécanisme est étudié numériquement et analytiquement, en considérantune catégorie de solutions exactes de l’équation de Schrödinger non-linéaire présentant descaractéristiques de localisations singulières. Les résultats obtenus sont vérifiés expérimentalement,notamment grâce à un système de caractérisation spectrale en temps réel et à l’utilisation conjointede métriques statistiques innovantes (ex : cartographie de corrélations spectrales). L’excellent accordentre simulations et expériences a permis de valider les prédictions théoriques et d’accéder àune meilleure compréhension des dynamiques complexes inhérentes à la propagation non-linéaired’impulsions optiques. / This thesis reports the study of nonlinear instabilities and extreme events occurring during the guidedpropagation of an electromagnetic field into optical fibers. After a short overview of the various linearand nonlinear processes leading to optical supercontinuum generation, we show that its spectrumcan exhibit large fluctuations, including the formation of extreme events, whose statistical propertiesas well as hydrodynamic rogue waves analogy are studied in detail. We provide a proof of principle ofusing these spectral fluctuations for random number and random walk generation and identify modulationinstability, associated with the onset phase of supercontinuum spectral broadening, as themain phenomenon leading to extreme event formation. This mechanism is studied both numericallyand analytically, considering a class of exact solutions of nonlinear Schrödinger equation which exhibitsingular localization characteristics. The results are experimentally verified, especially througha real-time spectral characterization system along with the use of innovative statistical metrics (e.g.spectral correlation maps). The excellent agreement between simulations and experiments allowedus to validate the theoretical predictions and get further insight into the complex dynamics associatedto nonlinear optical pulse propagation.
24

Some Contributions to Distribution Theory and Applications

Selvitella, Alessandro 11 1900 (has links)
In this thesis, we present some new results in distribution theory for both discrete and continuous random variables, together with their motivating applications. We start with some results about the Multivariate Gaussian Distribution and its characterization as a maximizer of the Strichartz Estimates. Then, we present some characterizations of discrete and continuous distributions through ideas coming from optimal transportation. After this, we pass to the Simpson's Paradox and see that it is ubiquitous and it appears in Quantum Mechanics as well. We conclude with a group of results about discrete and continuous distributions invariant under symmetries, in particular invariant under the groups $A_1$, an elliptical version of $O(n)$ and $\mathbb{T}^n$. As mentioned, all the results proved in this thesis are motivated by their applications in different research areas. The applications will be thoroughly discussed. We have tried to keep each chapter self-contained and recalled results from other chapters when needed. The following is a more precise summary of the results discussed in each chapter. In chapter \ref{chapter 2}, we discuss a variational characterization of the Multivariate Normal distribution (MVN) as a maximizer of the Strichartz Estimates. Strichartz Estimates appear as a fundamental tool in the proof of wellposedness results for dispersive PDEs. With respect to the characterization of the MVN distribution as a maximizer of the entropy functional, the characterization as a maximizer of the Strichartz Estimate does not require the constraint of fixed variance. In this chapter, we compute the precise optimal constant for the whole range of Strichartz admissible exponents, discuss the connection of this problem to Restriction Theorems in Fourier analysis and give some statistical properties of the family of Gaussian Distributions which maximize the Strichartz estimates, such as Fisher Information, Index of Dispersion and Stochastic Ordering. We conclude this chapter presenting an optimization algorithm to compute numerically the maximizers. Chapter \ref{chapter 3} is devoted to the characterization of distributions by means of techniques from Optimal Transportation and the Monge-Amp\`{e}re equation. We give emphasis to methods to do statistical inference for distributions that do not possess good regularity, decay or integrability properties. For example, distributions which do not admit a finite expected value, such as the Cauchy distribution. The main tool used here is a modified version of the characteristic function (a particular case of the Fourier Transform). An important motivation to develop these tools come from Big Data analysis and in particular the Consensus Monte Carlo Algorithm. In chapter \ref{chapter 4}, we study the \emph{Simpson's Paradox}. The \emph{Simpson's Paradox} is the phenomenon that appears in some datasets, where subgroups with a common trend (say, all negative trend) show the reverse trend when they are aggregated (say, positive trend). Even if this issue has an elementary mathematical explanation, the statistical implications are deep. Basic examples appear in arithmetic, geometry, linear algebra, statistics, game theory, sociology (e.g. gender bias in the graduate school admission process) and so on and so forth. In our new results, we prove the occurrence of the \emph{Simpson's Paradox} in Quantum Mechanics. In particular, we prove that the \emph{Simpson's Paradox} occurs for solutions of the \emph{Quantum Harmonic Oscillator} both in the stationary case and in the non-stationary case. We prove that the phenomenon is not isolated and that it appears (asymptotically) in the context of the \emph{Nonlinear Schr\"{o}dinger Equation} as well. The likelihood of the \emph{Simpson's Paradox} in Quantum Mechanics and the physical implications are also discussed. Chapter \ref{chapter 5} contains some new results about distributions with symmetries. We first discuss a result on symmetric order statistics. We prove that the symmetry of any of the order statistics is equivalent to the symmetry of the underlying distribution. Then, we characterize elliptical distributions through group invariance and give some properties. Finally, we study geometric probability distributions on the torus with applications to molecular biology. In particular, we introduce a new family of distributions generated through stereographic projection, give several properties of them and compare them with the Von-Mises distribution and its multivariate extensions. / Thesis / Doctor of Philosophy (PhD)

Page generated in 0.1364 seconds