• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 307
  • 92
  • 59
  • 51
  • 12
  • 10
  • 7
  • 6
  • 6
  • 5
  • 4
  • 3
  • 2
  • 2
  • 2
  • Tagged with
  • 644
  • 280
  • 161
  • 138
  • 137
  • 100
  • 72
  • 69
  • 67
  • 66
  • 66
  • 63
  • 57
  • 49
  • 48
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
421

Estimation de régularité locale

Servien, Rémi 12 March 2010 (has links) (PDF)
L'objectif de cette thèse est d'étudier le comportement local d'une mesure de probabilité, notamment au travers d'un indice de régularité locale. Dans la première partie, nous établissons la normalité asymptotique de l'estimateur des kn plus proches voisins de la densité et de l'histogramme. Dans la deuxième, nous définissons un estimateur du mode sous des hypothèses affaiblies. Nous montrons que l'indice de régularité intervient dans ces deux problèmes. Enfin, nous construisons dans une troisième partie différents estimateurs pour l'indice de régularité à partir d'estimateurs de la fonction de répartition, dont nous réalisons une revue bibliographique.
422

Data-Adaptive Multivariate Density Estimation Using Regular Pavings, With Applications to Simulation-Intensive Inference

Harlow, Jennifer January 2013 (has links)
A regular paving (RP) is a finite succession of bisections that partitions a multidimensional box into sub-boxes using a binary tree-based data structure, with the restriction that an existing sub-box in the partition may only be bisected on its first widest side. Mapping a real value to each element of the partition gives a real-mapped regular paving (RMRP) that can be used to represent a piecewise-constant function density estimate on a multidimensional domain. The RP structure allows real arithmetic to be extended to density estimates represented as RMRPs. Other operations such as computing marginal and conditional functions can also be carried out very efficiently by exploiting these arithmetical properties and the binary tree structure. The purpose of this thesis is to explore the potential for density estimation using RPs. The thesis is structured in three parts. The first part formalises the operational properties of RP-structured density estimates. The next part considers methods for creating a suitable RP partition for an RMRP-structured density estimate. The advantages and disadvantages of a Markov chain Monte Carlo algorithm, already developed, are investigated and this is extended to include a semi-automatic method for heuristic diagnosis of convergence of the chain. An alternative method is also proposed that uses an RMRP to approximate a kernel density estimate. RMRP density estimates are not differentiable and have slower convergence rates than good multivariate kernel density estimators. The advantages of an RMRP density estimate relate to its operational properties. The final part of this thesis describes a new approach to Bayesian inference for complex models with intractable likelihood functions that exploits these operational properties.
423

Développement de modèles non paramétriques et robustes : application à l’analyse du comportement de bivalves et à l’analyse de liaison génétique

Sow, Mohamedou 20 May 2011 (has links)
Le développement des approches robustes et non paramétriques pour l’analyse et le traitement statistique de gros volumes de données présentant une forte variabilité,comme dans les domaines de l’environnement et de la génétique, est fondamental.Nous modélisons ici des données complexes de biologie appliquées à l’étude du comportement de bivalves et à l’analyse de liaison génétique. L’application des mathématiques à l’analyse du comportement de mollusques bivalves nous a permis d’aller vers une quantification et une traduction mathématique de comportements d’animaux in-situ, en milieu proche ou lointain. Nous avons proposé un modèle de régression non paramétrique et comparé 3 estimateurs non paramétriques, récursifs ou non,de la fonction de régression pour optimiser le meilleur estimateur. Nous avons ensuite caractérisé des rythmes biologiques, formalisé l’évolution d’états d’ouvertures,proposé des méthodes de discrimination de comportements, utilisé la méthode des shot-noises pour caractériser différents états d’ouverture-fermetures transitoires et développé une méthode originale de mesure de croissance en ligne.En génétique, nous avons abordé un cadre plus général de statistiques robustes pour l’analyse de liaison génétique. Nous avons développé des estimateurs robustes aux hypothèses de normalités et à la présence de valeurs aberrantes, nous avons aussi utilisé une approche statistique, où nous avons abordé la dépendance entre variables aléatoires via la théorie des copules. Nos principaux résultats ont montré l’intérêt pratique de ces estimateurs sur des données réelles de QTL et eQTL. / The development of robust and nonparametric approaches for the analysis and statistical treatment of high-dimensional data sets exhibiting high variability, as seen in the environmental and genetic fields, is instrumental. Here, we model complex biological data with application to the analysis of bivalves’ behavior and to linkage analysis. The application of mathematics to the analysis of mollusk bivalves’behavior gave us the possibility to quantify and translate mathematically the animals’behavior in situ, in close or far field. We proposed a nonparametric regression model and compared three nonparametric estimators (recursive or not) of the regressionfunction to optimize the best estimator. We then characterized the biological rhythms, formalized the states of opening, proposed methods able to discriminate the behaviors, used shot-noise analysis to characterize various opening/closing transitory states and developed an original approach for measuring online growth.In genetics, we proposed a more general framework of robust statistics for linkage analysis. We developed estimators robust to distribution assumptions and the presence of outlier observations. We also used a statistical approach where the dependence between random variables is specified through copula theory. Our main results showed the practical interest of these estimators on real data for QTL and eQTL analysis.
424

Partial Least Squares for Serially Dependent Data

Singer, Marco 04 August 2016 (has links)
No description available.
425

Estimation non paramétrique du nombre d'espèces : Application à l'étude de la faune ichtyologique du bassin du fleuve Ouëmé / Nonparametric estimation of the number of species : application to the ichthyofauna of the Ouémé basin river

Koladjo, Babagnidé François 20 September 2013 (has links)
Ce manuscrit est structuré en deux parties. La première partie composée des chapitres 2à 4 aborde le problème d'estimation du nombre de classes dans une population avec une application en écologie. La deuxième partie, correspondant au chapitre 5,concerne la mise en oeuvre de méthodes statistiques pour analyser des données de pêche. Dans la première partie, nous considérons une population hétérogène subdiviséeen plusieurs classes. À partir d'un échantillon, les effectifs d'individus observés parclasse, encore appelés abondances, sont utilisés pour estimer le nombre total declasses dans la population. Dans la littérature consacrée à l'estimation du nombrede classes, les méthodes basées sur un mélange de distributions de Poisson semblentêtre les plus performantes (voir par exemple les travaux de Chao and Bunge (2002)dans le cadre paramétrique et celui de Wang and Lindsay (2005) dans un cadrenon paramétrique). La mise en oeuvre de ces approches sur des données réellesmet en évidence que la distribution des abondances peut être approchée par unedistribution convexe. Nous proposons une approche non paramétrique pour estimerla distribution des abondances sous contrainte de convexité. Cette contrainte définitun cadre théorique d'estimation d'une densité discrète. Le problème d'estimation dunombre de classes est donc abordé en deux volets. Nous montrons d'une part l'existenceet l'unicité d'un estimateur d'une densité discrète sous la contrainte de convexité.Sous cette contrainte, nous démontrons qu'une densité discrète s'écrit comme un mélange de densités triangulaires. À partir de l'algorithme de réduction du supportproposé par Groeneboom et al. (2008), nous proposons un algorithme exact pourestimer les proportions dans le mélange. D'autre part, la procédure d'estimationd'une densité discrète convexe nous sert de cadre pour l'estimation de la distributiontronquée en zéro des observations d'abondance. L'estimation de la loi tronquée obtenue est ensuite prolongée en zéro pour estimer la probabilité qu'une classe ne soit pasobservée. Ce prolongement en zéro est fait de façon à annuler la proportion dela première composante dans le mélange de densités triangulaires. Nousaboutissons à une estimation du nombre de classes à l'aide d'un modèle binomial ensupposant que chaque classe apparaît dans un échantillon par une épreuve deBernoulli. Nous montrons la convergence en loi de l'estimateur proposé. Sur le plan pratique, une application aux données réelles en écologie est présentée. La méthode est ensuite comparée à d'autres méthodes concurrentes à l'aide de simulations. La seconde partie présente l'analyse des données de pêche collectées dans le fleuveOuémé au Bénin. Nous proposons une démarche statistique permettant de regrouperles espèces selon leur profil temporel d'abondances, d'estimer le stock d'une espèceainsi que leur capturabilité par les engins de pêche artisanale. / This manuscript is structured in two parts. The #rst part composed of Chapters 2to 4 deals with the problem of estimating the number of classes in a population withan application in ecology. The second part, corresponding to Chapter 5, concernsthe application of statistical methods to analyze fisheries data.In the first part, we consider a heterogeneous population split into several classes.From a sample, the numbers of observed individuals per class, also called abun-dances, are used to estimate the total number of classes in the population. In theliterature devoted to the number of classes estimation, methods based on a mix-ture of Poisson distributions seem to be the most effcient (see for example the workof Chao and Bunge (2002) in the parametric framework and that of Wang and Lind-say (2005) in a non-parametric framework). Applications of these approaches to realdata show that the distribution of abundances can be approximated by a convexdistribution. We propose a non-parametric approach to estimate the distribution ofabundances under the constraint of convexity. This constraint defines a theoreticalframework for estimating a discrete density. The problem of estimating the numberof classes is then tackled in two steps.We show on the one hand the existence and uniqueness of an estimator of adiscrete density under the constraint of convexity. Under this constraint, we provethat a discrete density can be written as a mixture of triangular distributions. Usingthe support reduction algorithm proposed by Groeneboom et al. (2008), we proposean exact algorithm to estimate the proportions in the mixture.On the other hand, the estimation procedure of a discrete convex density is usedto estimate the zero-truncated distribution of the observed abundance data. Thezero-truncated distribution estimate is then extended at zero to derive an estimateof the probability that a class is not observed. This extension is made so as tocancel the first component in the mixture of triangular distributions. An estimateof the total number of classes is obtained through a binomial model assuming thateach class appears in a sample by a Bernoulli trial. We show the convergence inlaw of the proposed estimator. On practical view, an application to real ecologicaldata is presented. The method is then compared to other concurrent methods usingsimulations.The second part presents the analysis of fisheries data collected on the Ouémériver in Benin. We propose a statistical approach for grouping species accordingto their temporal abundance profile, to estimate the stock of a species and theircatchability by artisanal fishing gears.
426

Sur l'estimation semi paramétrique robuste pour statistique fonctionnelle / On the semiparametric robust estimation in functional statistic

Attaoui, Said 10 December 2012 (has links)
Dans cette thèse, nous nous proposons d'étudier quelques paramètres fonctionnels lorsque les données sont générées à partir d'un modèle de régression à indice simple. Nous étudions deux paramètres fonctionnels. Dans un premier temps nous supposons que la variable explicative est à valeurs dans un espace de Hilbert (dimension infinie) et nous considérons l'estimation de la densité conditionnelle par la méthode de noyau. Nous traitons les propriétés asymptotiques de cet estimateur dans les deux cas indépendant et dépendant. Pour le cas où les observations sont indépendantes identiquement distribuées (i.i.d.), nous obtenons la convergence ponctuelle et uniforme presque complète avec vitesse de l'estimateur construit. Comme application nous discutons l'impact de ce résultat en prévision non paramétrique fonctionnelle à partir de l'estimation de mode conditionnelle. La dépendance est modélisée via la corrélation quasi-associée. Dans ce contexte nous établissons la convergence presque complète ainsi que la normalité asymptotique de l'estimateur à noyau de la densité condtionnelle convenablement normalisée. Nous donnons de manière explicite la variance asymptotique. Notons que toutes ces propriétés asymptotiques ont été obtenues sous des conditions standard et elles mettent en évidence le phénomène de concentration de la mesure de probabilité de la variable fonctionnelle sur des petites boules. Dans un second temps, nous supposons que la variable explicative est vectorielle et nous nous intéressons à un modèle de prévision assez général qui est la régression robuste. A partir d'observations quasi-associées, on construit un estimateur à noyau pour ce paramètre fonctionnel. Comme résultat asymptotique on établit la vitesse de convergence presque complète uniforme de l'estimateur construit. Nous insistons sur le fait que les deux modèles étudiés dans cette thèse pourraient être utilisés pour l'estimation de l'indice simple lorsque ce dernier est inconnu, en utilisant la méthode d'M-estimation ou la méthode de pseudo-maximum de vraisemblance, qui est un cas particulier de la première méthode. / In this thesis, we propose to study some functional parameters when the data are generated from a model of regression to a single index. We study two functional parameters. Firstly, we suppose that the explanatory variable take its values in Hilbert space (infinite dimensional space) and we consider the estimate of the conditional density by the kernel method. We establish some asymptotic properties of this estimator in both independent and dependent cases. For the case where the observations are independent identically distributed (i.i.d.), we obtain the pointwise and uniform almost complete convergence with rateof the estimator. As an application we discuss the impact of this result in fuctional nonparametric prevision for the estimation of the conditional mode. In the dependent case we modelize the later via the quasi-associated correlation. Note that all these asymptotic properties are obtained under standard conditions and they highlight the phenomenon of concentration properties on small balls probability measure of the functional variable. Secondly we suppose that the explanatory variable takes values in the _nite dimensional space and we interest in a rather general prevision model whichis the robust regression. From the quasi-associated data, we build a kernel estimator for this functional parameter. As an asymptotic result we establish the uniform almost complete convergence rate of the estimator. We point out by the fact that these two models studied in this thesis could be used for the estimation of the single index of the model when the latter is unknown, by using the method of M-estimation or the pseudo-maximum likelihood method which is a particular case of the first method.
427

Inférence statistique à travers les échelles / Statistical inference across time scales

Duval, Céline 07 December 2012 (has links)
Cette thèse porte sur le problème d'estimation à travers les échelles pour un processus stochastique. Nous étudions comment le choix du pas d'échantillonnage impacte les procédures statistiques. Nous nous intéressons à l'estimation de processus à sauts à partir de l'observation d'une trajectoire discrétisée sur [0, T]. Lorsque la longueur de l'intervalle d'observation T va à l'infini, le pas d'échantillonnage tend soit vers 0 (échelle microscopique), vers une constante positive (échelle intermédiaire) ou encore vers l'infini (échelle macroscopique). Dans chacun de ces régimes nous supposons que le nombre d'observations tend vers l'infini. Dans un premier temps le cas particulier d'un processus de Poisson composé d'intensité inconnue avec des sauts symétriques {-1,1} est étudié. Le Chapitre 2 illustre la notion d'estimation statistique dans les trois échelles définies ci-dessus. Dans ce modèle, on s'intéresse aux propriétés des expériences statistiques. On montre la propriété de Normalité Asymptotique Locale dans les trois échelles microscopiques, intermédiaires et macroscopiques. L'information de Fisher est alors connue pour chacun de ces régimes. Ensuite nous analysons comment se comporte une procédure d'estimation de l'intensité qui est efficace (de variance minimale) à une échelle donnée lorsqu'on l'applique à des observations venant d'une échelle différente. On regarde l'estimateur de la variation quadratique empirique, qui est efficace dans le régime macroscopique, et on l'utilise sur des données provenant des régimes intermédiaire ou microscopique. Cet estimateur reste efficace dans les échelles microscopiques, mais montre une perte substantielle d'information aux échelles intermédiaires. Une procédure unifiée d'estimation est proposée, elle est efficace dans tous les régimes. Les Chapitres 3 et 4 étudient l'estimation non paramétrique de la densité de saut d'un processus renouvellement composé dans les régimes microscopiques, lorsque le pas d'échantillonnage tend vers 0. Un estimateur de cette densité utilisant des méthodes d'ondelettes est construit. Il est adaptatif et minimax pour des pas d'échantillonnage qui décroissent en T^{-alpha}, pour alpha>0. La procédure d'estimation repose sur l'inversion de l'opérateur de composition donnant la loi des incréments comme une transformation non linéaire de la loi des sauts que l'on cherche à estimer. L'opérateur inverse est explicite dans le cas du processus de Poisson composé (Chapitre 3), mais n'a pas d'expression analytique pour les processus de renouvellement composés (Chapitre 4). Dans ce dernier cas, il est approché via une technique de point fixe. Le Chapitre 5 étudie le problème de perte d'identifiabilité dans les régimes macroscopiques. Si un processus à sauts est observé avec un pas d'échantillonnage grand, certaines approximations limites, telles que l'approximation gaussienne, deviennent valides. Ceci peut entraîner une perte d'identifiabilité de la loi ayant généré le processus, dès lors que sa structure est plus complexe que celle étudiée dans le Chapitre 2. Dans un premier temps un modèle jouet à deux paramètres est considéré. Deux régimes différents émergent de l'étude : un régime où le paramètre n'est plus identifiable et un où il reste identifiable mais où les estimateurs optimaux convergent avec des vitesses plus lentes que les vitesses paramétriques habituelles. De l'étude de cas particulier, nous dérivons des bornes inférieures montrant qu'il n'existe pas d'estimateur convergent pour les processus de Lévy de saut pur ou pour les processus de renouvellement composés dans les régimes macroscopiques tels que le pas d'échantillonnage croît plus vite que racine de T. Enfin nous identifions des régimes macroscopiques où les incréments d'un processus de Poisson composé ne sont pas distinguables de variables aléatoires gaussiennes, et des régimes où il n'existe pas d'estimateur convergent pour les processus de Poisson composés dépendant de trop de paramètres / This thesis studies the problem of statistical inference across time scales for a stochastic process. More particularly we study how the choice of the sampling parameter affects statistical procedures. We narrow down to the inference of jump processes from the discrete observation of one trajectory over [0,T]. As the length of the observation interval T tends to infinity, the sampling rate either goes to 0 (microscopic scale) or to some positive constant (intermediate scale) or grows to infinity (macroscopic scale). We set in a case where there are infinitely many observations. First we specialise in a toy model: a compound Poisson process of unknown intensity with symmetric Bernoulli jumps. Chapter 2 highlights the concept of statistical estimation in the three regimes defined above and the phenomena at stake. We study the properties of the statistical experiments in each regime, we show that the Local Asymptotic Normality property holds in every regimes (microscopic, intermediate and macroscopic). We also provide the formula of the associated Fisher information in each regime. Then we study how a statistical procedure which is optimal (of minimal variance) at a given scale is affected when we use it on data coming from another scale. We focus on the empirical quadratic variation estimator, it is an optimal procedure at macroscopic scales. We apply it on data coming from intermediate and microscopic regimes. Although the estimator remains efficient at microscopic scales, it shows a substantial loss of information when used on data coming from an intermediate regime. That loss can be explicitly related to the sampling rate. We provide an unified procedure, efficient in all regimes. Chapters 3 and 4 focus on microscopic regimes, when the sampling rate decreases to 0. The nonparametric estimation of the jump density of a renewal reward process is studied. We propose an adaptive wavelet threshold density estimator. It achieves minimax rates of convergence for sampling rates that vanish polynomially with T, namely in T^{-alpha} for alpha>0. The estimation procedure is based on the inversion of the compounding operator in the same spirit as Buchmann and Grübel (2003), which specialiase in the study of discrete compound laws. The inverse operator is explicit in the case of a compound Poisson process (see Chapter 3), but has no closed form expression for renewal reward processes (see Chapter 4). In that latter case the inverse operator is approached with a fixed point technique. Finally Chapter 5 studies at which rate identifiability is lost in macroscopic regimes. Indeed when a jump process is observed at an arbitrarily large sampling rate, limit approximations, like Gaussian approximations, become valid and the specificities of the jumps may be lost, as long as the structure of the process is more complex than the one introduced in Chapter 2. First we study a toy model depending on a 2-dimensional parameter. We distinguish two different regimes: fast (macroscopic) regimes where all information on the parameter is lost and slow regimes where the parameter remains identifiable but where optimal estimators converge with slower rates than the expected usual parametric ones. From this toy model lower bounds are derived, they ensure that consistent estimation of Lévy processes or renewal reward processes is not possible when the sampling rate grows faster than the square root of T. Finally we identify regimes where an experiment consisting in increments of a compound Poisson process is asymptotically equivalent to an experiment consisting in Gaussian random variables. We also give regimes where there is no consistent estimator for compound Poisson processes depending on too many parameters
428

Modélisation et validation expérimentale des complexes insonorisants pour la prévision vibroacoustique numérique basse et moyenne fréquences des automobiles / Modelling and experimental validation of complex sound-insulation layers for computational low- and medium-frequency vibroacoustics of cars

Fernandez, Charles 11 December 2008 (has links)
Dans cette recherche, on construit un modèle simplifié en basses et moyennes fréquences de complexes insonorisants (habillages) de l’industrie automobile à partir d'un élément élastoacoustique stochastique. Le modèle simplifié moyen est issu d'une extension de la théorie des structures floues et dépend de trois paramètres physiques : densité modale, amortissement et masse participante. Le modèle simplifié stochastique qui prend en compte les incertitudes de modèle et de données est construit en utilisant une approche probabiliste non paramétrique et dépend de trois paramètres de dispersion. Le modèle simplifié de l'habillage est implémenté dans un modèle vibroacoustique stochastique industriel d’automobile. Deux problèmes inverses sont résolus à l’aide d'une base de données expérimentales sur véhicules construite en parallèle et permettent d’identifier les paramètres du modèle complet. L'analyse des résultats permet de valider les développements théoriques et la méthodologie proposée / This research aims at developing a simplified low- and medium-frequency model for automotive sound-insulation layers based on a stochastic elastoacoustic element. The mean simplified model comes from an extension of the fuzzy structures theory and depends on three physical parameters : modal density, damping and participating mass. A nonparametric probabilistic approach is used to build the uncertainty-accounting stochastic simplified model. This model takes into account the modeling and system parameters uncertainties and depends on three dispersion parameters. The insulation simplified model is then implemented in an industrial stochastic vibroacoustic model of a car. An experimental database of tests on vehicles has been concomitantly carried out and has led to inverse problems allowing the identification of the simplified model parameters to be performed. The analysis of these results shows the validation of the theory and the relevance of the proposed methodology
429

The Effects of an Employment Tax Enforcement Regime on US Small Business and Proprietor Payment Compliance

Dacal, Rafael 13 March 2017 (has links)
This study attempted to identify ways to improve voluntary compliance and minimize taxpayer burden, but also tries to understand the behavior of taxpayers’ compliance given the compliance regimen. Most explicitly, it attempted to identify ways to improve payment compliance using regimens already utilized in other parts of the tax code. The research question was whether different tax regimes, such as safe harbor, can change the behavior of employment tax payment for small business or self-employed taxpayers. The idea was to determine if a safe harbor provision can reduce the proclivity of authorized individuals to implement a payroll tax dilemma strategy and whether or regimen can reduce payment noncompliance in time of economic distress. To answer the research question, an online experiment was employed. The experimental design was an impact study. The population of interest in this study was all authorized individuals from small and self-employed firms. The sample size totaled 205, and it was based on the a-priori sample size calculation. Analysis of variance (ANOVA) was chosen as the data analysis technique, but other nonparametric test and logistic regression models were used to further analyze the data. This study showed that for subjects who did not subscribed to safe harbor provision but experienced an increased probability of apprehension increased their payment compliance. Also, the availability of a safe harbor provision lead to a large numbers to a safe harbor provision subscription in order to avoid enforcement. This study was able to show that individuals were willing to improve their payment compliance rate when enforcement was increased. The General Deterrence Theory explains that increased deterrence will lead to higher compliance. The study showed a 10 percent improvement in payment compliance when safe harbor was implemented. The results from this study also suggest that provisions such as a safe harbor can be a method of reducing filing costs and audit costs and ultimately taxpayer burden. On the other hand, the results of this study were inconclusive in determining if such provisions can improve payment compliance. Nevertheless, the outcome of this study can improve timing and accuracy of employment taxes payments and it may improve the accuracy of employment tax payment.
430

Estimation des systèmes semi-markoviens à temps discret avec applications / Estimation of semi-Markov systems in discrete time with applications

Georgiadis, Stylianos 03 December 2013 (has links)
Le présent travail porte sur l’estimation d’un système en temps discret dont l’évolution est décrite par une chaîne semi-markovienne (CSM) d’espace d’état fini. Nous présentons le principe d’invariance sous forme multidimensionnelle pour le noyau semi-markovien (NSM), ainsi que diverses mesures du processus. Ensuite, nous étudions l’estimation non-paramétrique de la loi stationnaire de la CSM, en considérant deux estimateurs différents, et nous montrons qu’ils ont le même comportement asymptotique. La probabilité de la première entrée est également introduite. Nous proposons un estimateur et nous étudions ses propriétés asymptotiques : la convergence forte et la normalité asymptotique.D’autre part, nous nous concentrons sur l’étude de la fiabilité des systèmes semi-markoviens. Nous définissons la fiabilité sur intervalle d’un système dont la fiabilité et la disponibilité sont des cas particuliers et nous étudions les propriétés asymptotiques d’un estimateur proposé. De plus, nous présentons une comparaison de l’estimation des différentes mesures de fiabilité fondées sur deux estimateurs du NSM, en réalisant une trajectoire unique et des observations multiples indépendantes. Ce travail fournit aussi des résultats dans le cas semi-markovien à temps discret avec espace d’état général. Nous évaluons l’approximation de moyenne et de diffusion des chaînes de renouvellement markovien. Enfin, nous nous sommes aussi intéressés à une autre classe des processus pour laquelle nous obtenons des résultats dans le cadre des files d’attente. Nous étudions l’approximation de moyenne pour le modèle d’Engset en temps continu et nous appliquons ce résultat aux files d’attente avec ré-essais. / The present work concerns the estimation of a discrete-time system whose evolution is governed by a semi-Markov chain (SMC) with finitely many states. We present the invariance principle in a multidimensional form for the semi-Markov kernel (SMK) and some associated measures of the process. Afterwards, we study the nonparametric estimation of the stationary distribution of the SMC, considering two different estimators, and we prove that they hold the same asymptotic behavior. We introduce also the first hitting probability. We propose an estimator and study its asymptotic properties : the strong consistency and the asymptotic normality. On the other hand, we focus on the study of the dependability of semi-Markovsystems. We introduce the interval reliability whose special cases are the reliability and the availability measures and we study the asymptotic properties of a proposed estimator. Moreover, we present a comparison of nonparametric estimation for various reliability measures based on two estimators of the SMK, realizing a unique trajectory and multiple independent observations.Furthermore, this work provides results on the discrete-time semi-Markov case with general state space. We evaluate the average and diffusion approximation of Markov renewal chains. Finally, we are also interested in another class of processes for which we obtain results in the framework of queueing systems. We establish the average approximationfor the Engset model in continuous time and we apply this result to retrial queues.

Page generated in 0.0856 seconds