• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Volumetric PIV and OH PLIF imaging in the far field of nonpremixed jet flames

Gamba, Mirko 03 September 2009 (has links)
Cinematographic stereoscopic PIV, combined with Taylor's frozen flow hypothesis, is used to generate three-dimensional (3D) quasi-instantaneous pseudo volumes of the three-component (3C) velocity field in the far field of turbulent nonpremixed jet flames at jet exit Reynolds number Reδ in the range 8,000-15,300. The effect of heat release, however, lowers the local (i.e., based on local properties) Reynolds number to the range 1,500-2,500. The 3D data enable computation of all nine components of the velocity gradient tensor ∇u from which the major 3D kinematic quantities, such as strain rate, vorticity, dissipation and dilatation, are computed. The volumetric PIV is combined with simultaneously acquired 10 Hz OH planar laser-induced fluorescence (PLIF). A single plane of the OH distribution is imaged on the center-plane of the volume and provides an approximate planar representation of the instantaneous reaction zone. The pseudo-volumes are reconstructed from temporally and spatially resolved kilohertz-rate 3C velocity field measurements on an end-view plane (perpendicular to the jet flame axis) invoking Taylor's hypothesis. The interpretation of the measurements is therefore twofold: the measurements provide a time-series representation of all nine velocity gradients on a single end-view plane or, after volumetric reconstruction, they offer a volumetric representation, albeit approximate, of the spatial structure of the flow. The combined datasets enable investigation of the fine-scale spatial structure of turbulence, the effect of the reaction zone on these structures and the relationship between the jet kinematics and the reaction zone. Emphasis is placed on the energy dissipation field and on the presence and role of dilatation. Statistics of the components of the velocity gradient tensor and its derived quantities show that these jet flames exhibit strong similarities to incompressible turbulent flows, such as in the distribution of the principal strain rates and strain-vorticity alignment. However, the velocity-gradient statistics show that these jet flames do not exhibit small-scale isotropy but exhibit a strong preference for high-magnitude radial gradients, which are attributed to regions of strong shear induced by the reaction zone. The pseudo volumes reveal that the intense-vorticity field is organized in two major classes of structures: tube-like away from the reaction zone (the classical worms observed in incompressible turbulence) and sheet-like in the vicinity of the local reaction zone. Sheet-like structures are, however, the dominant ones. Moreover, unlike incompressible turbulence where sheet-like dissipative structures enfold, but don't coincide with, clusters of tube-like vortical structures, it is observed that the sheet-like intense-vorticity structures tend to closely correspond to sheet-like structures of high dissipation. The primary reason for these features is believed to be due to the stabilizing effect of heat release on these relatively low local Reynolds number jet flames. It is further observed that regions of both positive and negative dilatation are present and tend to be associated with the oxidizer and fuel sides of the OH zones, respectively. These dilatation features are mostly organized in small-scale, short-lived blobby structures that are believed to be mainly due to convection of regions of varying density rather than to instantaneous heat release rate. A model of the dilatation field developed by previous researchers using a flamelet approximation of the reaction zone was used to provide insights into the observed features of the dilatation field. Measurements in an unsteady laminar nonpremixed jet flame where dilatation is expected to be absent support the simplified model and indicate that the observed structure of dilatation is not just a result of residual noise in the measurements, although resolution effects might mask some of the features of the dilatation field. The field of kinetic energy dissipation is further investigated by decomposing the instantaneous dissipation field into the solenoidal, dilatational and inhomogeneous components. Analysis of the current measurements reveals that the effect of dilatation on dissipation is minimal at all times (it contributes to the mean kinetic energy dissipation only by about 5-10%). Most of the mean dissipation arises from the solenoidal component. On average, the inhomogeneous component is nearly zero, although instantaneously it can be the dominant component. Two mechanisms are believed to be important for energy dissipation. Near the reaction zone, where the stabilizing effect of heat release generates layers of laminar-like shear and hence high vorticity, solenoidal dissipation (which is proportional to the enstrophy) dominates. In the rest of the ow the inhomogeneous component dominates in regions subjected to complex systems of nested vortical structures where the mutual interaction of interwoven vortical structures in intervening regions generates intense dissipation. / text
2

An Experimental Study of Soot Formation in Dual Mode Laminar Wolfhard-Parker Flames

Hibshman, Randolph Joell II 10 October 1998 (has links)
An experimental study of sooting characteristics of laminar underventillated ethylene non-premixed flames in hot vitiated environments was performed using a modified Wolfhard-Parker co-flowing slot burner. The burner could be operated in "single mode" with a cold air/oxygen mixture as the oxidizer for the non-premixed flame or in varying degrees of "dual mode" where the products of lean premixed hydrogen/air/oxygen flames were used as the oxidizer for the non-premixed flame. Premixed flame stoichiometries of 0.3 and 0.5 were considered for the dual mode cases. Dual mode operation of the burner was intended to simulate the conditions of fuel rich pockets of gas burning in the wake of previously burned fuel/air mixture as typically found in real nonpremixed combustion devices. Dual mode operation introduced competing thermal and chemical effects on soot chemistry. Experimental conditions were chosen to match peak nonpremixed flame temperatures among the cases by varying oxidizer inert (N2) concentration to minimize the dual mode thermal effect. In addition the molecular oxygen (post premixed flame for dual mode cases) and ethylene fuel flow rates were held constant to maintain the same overall equivalence ratio from case to case. Thermocouple thermometry utilizing a rapid insertion technique and radiation corrections yielded the gas temperature field. Soot volume fractions were measured simultaneously with temperature using Thermocouple Particle Densitometry (TPD). Soot volume fraction, particle size and particle number density fields were measured using laser light scattering and extinction. Gas velocities were measured using Particle Imaging Velocimetry (PIV) on the non-premixed flame centerline by seeding the ethylene flow and calculated in the oxidizer flow stream. Porous sinters in the oxidizer slots prevented oxidizer particle seeding required for PIV measurements. In general as the degree of dual mode operation was increased (i.e. increasing stoichiometry of the premixed flames) soot volume fractions decreased, particle sizes increased and soot particle number densities decreased. This trend is suspected to be result of water vapor elevating OH concentrations near the flame front in dual mode operation reducing soot particle nucleation early in the flame by oxidizing soot precursors. The larger particle sizes measured at later stages of dual mode flames are suspected to be the result of lower competition for surface growth species for the lower particle number densities in those flames. Integrated soot volume fraction and particle number fluxes at various heights in the flame decreased with increasing degree of dual mode operation. / Master of Science
3

Soot Measurements in Steady and Pulsed Ethylene/Air Diffusion Flames Using Laser-Induced Incandescence

Sapmaz, Hayri Serhat 29 March 2006 (has links)
Combustion-generated carbon black nano particles, or soot, have both positive and negative effects depending on the application. From a positive point of view, it is used as a reinforcing agent in tires, black pigment in inks, and surface coatings. From a negative point of view, it affects performance and durability of many combustion systems, it is a major contributor of global warming, and it is linked to respiratory illness and cancer. Laser-Induced Incandescence (LII) was used in this study to measure soot volume fractions in four steady and twenty-eight pulsed ethylene diffusion flames burning at atmospheric pressure. A laminar coflow diffusion burner combined with a very-high-speed solenoid valve and control circuit provided unsteady flows by forcing the fuel flow with frequencies between 10 Hz and 200 Hz. Periodic flame oscillations were captured by two-dimensional phase-locked LII images and broadband luminosity images for eight phases (0°- 360°) covering each period. A comparison between the steady and pulsed flames and the effect of the pulsation frequency on soot volume fraction in the flame region and the post flame region are presented. The most significant effect of pulsing frequency was observed at 10 Hz. At this frequency, the flame with the lowest mean flow rate had 1.77 times enhancement in peak soot volume fraction and 1.2 times enhancement in total soot volume fraction; whereas the flame with the highest mean flow rate had no significant change in the peak soot volume fraction and 1.4 times reduction in the total soot volume fraction. A correlation (ƒv Reˉ1 = a+b· Str) for the total soot volume fraction in the flame region for the unsteady laminar ethylene flames was obtained for the pulsation frequency between 10 Hz and 200 Hz, and the Reynolds number between 37 and 55. The soot primary particle size in steady and unsteady flames was measured using the Time-Resolved Laser-Induced Incandescence (TIRE-LII) and the double-exponential fit method. At maximum frequency (200 Hz), the soot particles were smaller in size by 15% compared to the steady case in the flame with the highest mean flow rate.

Page generated in 0.0564 seconds