• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Solcellsanläggning vid LTU

Fogelström, Frej, Rosendal, Andreas January 2021 (has links)
In this project, intended photovoltaic installations on the campus area of Luleå University of Technology are cost–estimated, designed and mapped based on solar power in northern conditions. An increased precipitation of snow and low solar angles are the main factors influencing the energy yield from PV installations in northern conditions. The reduced irradiation during winter results in a power production corresponding to only a few percent of the production during summer. Snow shading can lead to a 30% annual production loss and is strongly correlated to module tilt and placement. The roof surfaces selected for the installations have shown good potential regarding yearly irradiation based on modeling, simulations, solar mapping and photography. The modules selected in the project are monocrystalline moduls in half–cell design from Trina Solar, Longi Solar and Q–cells. Placement has been made in a landscape position with southern orientation. Simulated production for the A–house installation was 260 MWh, B–house 200 MWh, C–house 190 MWh, E–house 310 MWh, F–house 450 MWh and Polstjärnan 80 MWh. Total annual production for the campus has been calculated to approximately 1,5 GWh.  The total cost for the installation of each building was estimated for the A–building 1,4 MSEK; B– and C– building 1,1 MSEK; building 1,7 MSEK; building 2,4 MSEK and Polstjärnan 0,4 MSEK. The total cost for all the installations was estimated to 8,1 MSEK with a payback time estimated at 10 years. The most feasible case in terms of produced solar power in relation to total investment cost is the modules from Q–cells. The priority order for the construction of each installations in descending order is: A–house, F–house, E–house, C–house, B–house and Polstjärnan based on availability and profitability. Simulated production in relation to the buildings’ electricity demand shows that storage and feedback to the electricity grid is not relevant for the roof–mounted installations in the project. To cover the electricity demand with self–produced solar power, additional ground–mounted installations and improved conditions for roof installation in the event of new constructions and renovations are recommended.
2

Monteringshöjd och markinterferens i nordliga solkraftsparker : Minskade skuggningseffekter från ansamling av snö i markmonterade solcellsanläggningar i norra Sverige.

Edebo, Gabriella January 2023 (has links)
Markmonterade solcellsanläggningar i norra Sverige behöver ta hänsyn till förekomsten av snö och risken för markinterferens, vilket innebär att snömängden i framkant av panelerna gör att den snö som ackumuleras ovanpå inte kan glida av. Följden blir skuggning av panelerna som därmed får nedsatt eller helt utebliven elproduktion. Syftet med arbetet var att besvara frågeställningar kring vilken montagehöjd som krävs för att undvika problemet samt om den ökade engångskostnaden kompenseras av potentialen till ökad produktion under vintermånaderna. Metoden bestod främst av att jämföra produktionsdata från en solpark i Östersund med värden för solinstrålning och snödjup från SMHI för att avgöra vilken effekt snöskuggning haft på produktionen och hur utfallet skulle ha sett ut vid olika monteringshöjder av anläggningen. Resultaten visar att det finns stor potential till goda produktionsvärden under vårvintern, förutsatt att markinterferens inte finns närvarande. Anledningen beror troligtvis på högt albedo från snötäckt mark och lägre lufttemperaturer vilket har en positiv inverkan på modulernas verkningsgrad. En beräkningsmodell utvecklades för att uppskatta en lämplig monteringshöjd för en solpark utifrån dess tänkta utformning och det förväntade snödjupet på platsen. Förhoppningen är att modellen kan bidra till ökad kunskap för att främja utbyggnad av markmonterade solcellsanläggningar även på nordliga breddgrader. Lönsamheten för ett högre montage undersöktes genom en jämförelse mellan ett prisexempel från en uppförd solpark och ett uppskattat produktionsbortfall från solparken i Östersund vid en teoretiskt lägre monteringshöjd. Det visade att en höjning av Östersundsparken från 50 till 90 centimeter skulle betala av sig enbart genom tillskottet i produktion under perioden februari till april de tre första vintrarna. / Ground-mounted PV installations in northern Sweden need to consider the presence of snow and the risk of ground interference, meaning that the buildup of snow in front of the panels prevents the snow accumulated on top from sliding off. The result is shading of the panels, which in turn reduces or eliminates the electricity production. The purpose of this work was to answer questions regarding the mounting height required to avoid this problem and whether the increased one-time cost for higher mounting is compensated for by the enhanced production during winter months. The method consisted mainly of comparing production data from a solar park in Östersund to solar radiation values and snow depth from SMHI to determine the effect of snow shading on production and the outcome at different installation heights of the plant. The results showed that there is great potential for valuable energy production during the late winter season, provided that ground interference is not present. This is probably due to high albedo from snow-covered ground and lower air temperatures resulting in a positive impact on the efficiency of the modules. A computational model was developed to estimate a suitable mounting height for a solar park based on the intended design and expected snow depth at the site. The intention is that the model can contribute to increased knowledge to promote the deployment of ground-mounted PV systems in northern latitudes. The profitability of higher mounting was investigated by comparing a price example from an existing solar facility and an estimated production loss from the solar park in Östersund at a theoretical lower mounting height. It showed that  increasing the height of the Östersund site from 50 to 90 centimeters in front would pay off solely on the enhanced production during the period February to April of the first three winters.

Page generated in 0.0598 seconds