• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 3
  • Tagged with
  • 27
  • 13
  • 13
  • 12
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • 7
  • 6
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Solelens roll i energiomställningen. : Hinder och möjligheter för medborgare i Uppsala stad att producera egen solel.

Kjellgren, Helena January 2016 (has links)
Milleniemål nummer sju avser att skapa en hållbar utveckling för framtida generationer. Ett sätt att uppnå mål nummer sju är skapandet av mer energieffektiva energisystem med förnybara ämnen. Solen är en av de förnybara källor som skall skapa energiomställningen. Uppsatsen studerar solelens roll i energiomställningen. Studien kommer att redogöra för vad som får bostadsrättsföreningar och/eller enskilda att installera solel. Det finns såväl hinder som möjligheter för installationer av solel som i sin komplexitet påverkas av de politiska besluten. Hindren representeras av lagar och regler som försvårar för personer att enkelt och okomplicerat byta energisystem från Uppsalas elnät till egenproducerad solel. Att möjliggöra nettodebitering, nya skatteregler och möjligheten att äga andelar i solcellsparker är framtida ambitioner och visioner för att ytterligare gynna solelens roll i energiomställningen. Dagens möjligheter kommer av den lönsamhet som kommer av solel och faktum att vara en del av en mer energi- och miljövänlig elkultur. Energiomställningen förstärks vidare av den kapacitet prosumenter (konsumera och producera egen solel) har. Likväl som politiska beslut behövs för att främja expansionen av solel står individer för en förändrad kulturell syn på energisystem.
2

Potential för storskalig anslutning av solel i landsbygdsnät

Marklund, Jesper January 2015 (has links)
The study examines the potential for extensive connection of photovoltaic (PV) production in the Swedish rural power grid, considering the case distribution grid (10kV) of Herrljunga Elektriska. Hourly PV production is calculated using radiation and temperature data together with information regarding building roofs in the studied area. Furthermore, hourly customer load data is aggregated, enabling detailed power flow simulations of the grid resulting in hourly voltages and currents for all nodes during 2014. Three cases with varying PV production are studied, using different thresholds for minimum annual radiation. Thus, roofs with lower annual radiation are excluded from the simulations, limiting PV production. The three cases considers annual radiation greater than 0 kWh/m2 , 700 kWh/m2 and 1000 kWh/m2. Simulations show that the distribution grid in Herrljunga maintains acceptable performance with respect to voltages and currents for the 1000 kWh/m2,year case, yielding an annual production of 30 % of consumption. The hosting capacity, which is an estimate of the amount of PV that can be connected to the grid, is therefore 30 %. In order to further examine grid limitations, weak parts of the grid are identified. These are situated in the peripheral parts of the grid, which is in accordance with earlier studies of intermittent power production in distribution grids. Additionally, low voltage grids in connection to these weaker parts of the distribution grid are simulated, showing no further limitations for hosting capacity.
3

Solenergiutveckling i Halland

Andersson, Martin, Åhlund, Anton January 2014 (has links)
Idag ökar antalet solenergianläggningar stort i Sverige, framförallt inom solelen. Samtidigt finns det inte någon långsiktig hållbar metod för att statistikföra solenergin. Det finns heller ingen regionsspecifik statistik, något som många svenska län och kommuner är intresserade av. Med bakgrund till detta behandlar arbetet frågor om solenergins utveckling med utgångspunkt för Hallands län, där fokus ligger på statistikinsamling. För att få en god uppfattning om utbyggnaden av solenergi i länet görs en statistiksammanställning av regionens solenergi. Samtidigt läggs förslag på framtida statistikmetoder för att bättre kunna följa solenergins utveckling i framtiden, regionalt såväl som nationellt. En jämförelse med andra län samt Tyskland och Danmark görs för att fånga upp idéer. Jämförelsen visar att Tyskland och Danmark idag har mer utvecklade metoder för statistikinsamling av solel medan de likt Sverige, har begränsad solvärmestatistik. Även en lönsamhetsberäkning för en mindre privat solcellsanläggning gjordes. Det visade sig vara lönsamt om anläggningen får skattereduktion eller investeringsstöd. Utan ekonomisk hjälp är lönsamheten lägre, även om utsikterna kan ändras beroende på elprisutvecklingen. Resultatet av den regionala statistiksammanställningen visar att Halland i början av år 2014 hade 1,6 GWh i årlig energiomvandling för solel respektive 7,3 GWh för solvärme. I länet finns 5,3 W/capita nätansluten solel jämfört med Sveriges 4,2 W/capita, vilket innebär att Halland har 21 % mer installerad effekt än Sverige i genomsnitt. De lämpligaste källorna för insamling av solenergistatistik är energibolag och installatörer där en kombination av dessa två källor ger en stor säkerhet och hög täckningsgrad. Finns bara resurser är detta det bästa alternativet. Rapportering går från dagens manuella metod till ett automatiserat system. En viktig ändring blir att rapportering av lokalisering införs vilket medför att regional statistik enkelt kan sammanställas.
4

Solcellsanläggning vid LTU

Fogelström, Frej, Rosendal, Andreas January 2021 (has links)
In this project, intended photovoltaic installations on the campus area of Luleå University of Technology are cost–estimated, designed and mapped based on solar power in northern conditions. An increased precipitation of snow and low solar angles are the main factors influencing the energy yield from PV installations in northern conditions. The reduced irradiation during winter results in a power production corresponding to only a few percent of the production during summer. Snow shading can lead to a 30% annual production loss and is strongly correlated to module tilt and placement. The roof surfaces selected for the installations have shown good potential regarding yearly irradiation based on modeling, simulations, solar mapping and photography. The modules selected in the project are monocrystalline moduls in half–cell design from Trina Solar, Longi Solar and Q–cells. Placement has been made in a landscape position with southern orientation. Simulated production for the A–house installation was 260 MWh, B–house 200 MWh, C–house 190 MWh, E–house 310 MWh, F–house 450 MWh and Polstjärnan 80 MWh. Total annual production for the campus has been calculated to approximately 1,5 GWh.  The total cost for the installation of each building was estimated for the A–building 1,4 MSEK; B– and C– building 1,1 MSEK; building 1,7 MSEK; building 2,4 MSEK and Polstjärnan 0,4 MSEK. The total cost for all the installations was estimated to 8,1 MSEK with a payback time estimated at 10 years. The most feasible case in terms of produced solar power in relation to total investment cost is the modules from Q–cells. The priority order for the construction of each installations in descending order is: A–house, F–house, E–house, C–house, B–house and Polstjärnan based on availability and profitability. Simulated production in relation to the buildings’ electricity demand shows that storage and feedback to the electricity grid is not relevant for the roof–mounted installations in the project. To cover the electricity demand with self–produced solar power, additional ground–mounted installations and improved conditions for roof installation in the event of new constructions and renovations are recommended.
5

Solcellers bidragande faktorer i en byggproduktion / Solar Cells Contributing Factors in a Building Production

Åkerström, Fanny, Langdell, Tova January 2019 (has links)
Purpose: The purpose of this study is to investigate whether solar cells could have supplied to the energy needs of a construction project during its building phase and see which advantages and disadvantages this would have brought the company. Method: A case study has been carried out on a selected project with help from a selected company. The data collection methods that have been used for the empirical work have been literature research, document analysis, calculations from a solar cell simulation program and interviews. Findings: The results of the study answer the questions of the study and show how much solar cells could have contributed to the project, relative to the project’s electricity use. The findings also show how the placement of solar cells on the barracks and tool containers could have been carried out in order to retrieve as much energy from the sun as possible. Implications: The conclusion of this study is that the solar cells require a considerable amount of space, and therefore the case study project could not have used solar cells only to cover the project’s energy needs. Solar cells require maintenance and are a great cost to the companies involved, but can also promote the company’s reputation and contribute to a more sustainable society. Limitations: The study has been limited to one construction project of a tennis arena located in the Stockholm region, which was built by a construction company between August 2016 and February 2018. The study only takes the electricity usage during the production phase into account and the aim were to see if electricity from solar cells in the construction area could have contributed to the electricity needs during this period. The focus of the report is not costs, use of batteries, or regulations concerning the project, but these aspects are briefly covered. Keywords: Solar cells, solar electricity, building production, renewable energy, energy production.
6

Möjligheten för solceller genom solcellskooperativ och solelbörs

olofsson, karl, bengtsson, simon January 2011 (has links)
This candidate thesis contains the possibility of expand the Swedish photovoltaic market through photovoltaic cooperatives and a photovoltaic exchange. In the current situation there is a lot of problems with production of electricity from photovoltaic, that’s why we show some possibilities how to avoid these. To understand the problem with photovoltaic produced electricity we first give you a background. We show how to expand the Swedish photovoltaic market by describing how a photovoltaic cooperative and photovoltaic exchange could work in Sweden. It have been confirmed from our market research that the interest of photovoltaic cooperative and exchange is high. To find out how profitable photovoltaic is in Sweden, have three projections been made. These have been done to show how the price per kWh affect depending the size of the power plant. With the help of these results it can be decided which of the projected plants who is the most profitable for given conditions. The photovoltaic power plant that uses the Swedish grand scheme optimal and has the maximum size is the most profitable today. The thesis has been divided into five sections, background, projections, cooperative, photovoltaic exchange and market research. The thesis is limited to Swedish conditions and is based on information from literature, technical reports and interviews.
7

Energieffektivisering och solenergi i en universitetsbyggnad : Undervisningshuset och Biblioteket i Uppsala / Efficient Energy Use and Solar Energy in a University Building

Schweitz, Christian January 2011 (has links)
Akademiska hus is a real estate company that specializes in providing Swedish universities with housing facilities for educational and research purposes. The company strives to reduce its use of energy by 40% between the years 2000 and 2025. The aim of this thesis is to determine which measures can be taken to reduce the need of purchased energy in a building that is used by theSwedishUniversityof Agricultural Sciences inUppsala. In order to determine the results of various changes to the building envelope and ventilation system, the building was modelled in the computer simulation program VIP-Energy. Other proposed changes to make the use of energy more efficient concerned water use and lighting. The need of purchased energy can also be reduced by producing electricity or heat on site, using solar energy. Results show that economically viable measures include upgrading windows and faucets, adjusting control systems for ventilation and lighting, and installing roof mounted solar panels for power production. However, the investment in a photovoltaic system requires government grants in order to be profitable, and the system should be grid-connected to make it eligible for green certificates. Through these measures it is possible to reduce the need to purchase electricity for operational uses and energy for heating and cooling by 20%, from 99 kWh/m2,year to 79 kWh/m2,year. This corresponds to a 92 tonne decrease of annual carbon dioxide emissions from energy production and water purification. The total investment cost of 1 066 000 SEK results in a net present value of 883 000 SEK / Byggnadssektorn står för en knapp tredjedel av den totala energianvändningen i Sverige, och för drygt 10 % av de totala utsläppen av växthusgaser. Energianvändning i byggnader omfattas av riksdagens nationella miljökvalitetsmål för god bebyggd miljö, och målet är att den totala specifika energianvändningen ska minska med 20 % till år 2020 och med 50 % till år 2050, jämfört med år 1995. I Boverkets byggregler ställs bland annat krav på nybyggda lokalbyggnaders specifika energianvändning och i klimatzon III, dit Uppsala län räknas, är gränsen högst 90 kWh/m2,år exklusive verksamhetsel. Energi från egen solcells- eller solvärmeanläggning får tillgodo­räknas vid beräkningen av en byggnads specifika energianvändning. Det är möjligt att erhålla investeringsstöd för både solcells- och solvärmeanläggningar, och dessutom är elproduktion från solenergi berättigad till elcertifikat. Syftet med examensarbetet har varit att undersöka möjligheterna att minska behovet att köpt energi i en universitetsbyggnad i Uppsala, genom energieffektivisering och solenergi. Föreslagna åtgärder har bedömts genom att jämföra ändringen i energianvändning och utsläpp av koldioxid, samt genom de ekonomiska nyckeltalen återbetalningstid, kapitalvärde och besparingskostnad. Arbetet har utförts vid Uppsala universitet åt uppdragsgivaren fastighetsbolaget Akademiska hus. Energihushållning är ett av fyra områden som Akademiska hus fokuserar på i sitt miljöarbete, och det långsiktiga målet är att minska den specifika energianvändningen med 40 % mellan år 2000 och år 2025. Den aktuella byggnaden hyrs av Sveriges lantbruksuniversitet och ligger på Campus Ultuna i Uppsala. Byggnaden är indelad i två fastigheter, Undervisningshuset och Biblioteket, och är av suterrängtyp med fyra våningsplan och en bruksarea på drygt 9 000 m2. Lokalerna består främst av föreläsningssalar och biblioteket, men även av kontorsutrymmen, datasalar, sammanträdesrum, pentryn, en aula och allmänna utrymmen. Byggnaden värms av fjärrvärme som i huvudsak produceras från torv- och avfalls-förbränning. Dessutom finns ett system för komfortkyla installerat, som inom kort ska förses med kyla från en fjärrkylaanläggning i nära anslutning till byggnaden. Kylan ska i huvudsak produceras med fjärrvärmedrivna absorptionsvärmepumpar. Ventilationsbehovet tillgodoses med från- och tilluftsfläktar, och återvinning av värme ur frånluften finns. Ventilations-systemet styrs både på tid, temperatur och koldioxidnivå. Belysningen i byggnaden är på många ställen närvarostyrd, men det finns lokaler med enbart tidsstyrning. I dag använder byggnaden årligen cirka 630 MWh värme, 450 MWh verksamhetsel, 150 MWh fastighetsel och 110 MWh kyla. Detta ger en specifik energianvändning på 99 kWh/m2,år exklusive verksamhetsel, och 149 kWh/m2,år inklusive verksamhetsel. För att kartlägga byggnadens energibehov och undersöka olika åtgärders konsekvenser för energianvändningen, har en modell konstruerats i byggnadssimuleringsprogrammet VIP‑Energy. I stor utsträckning har byggnadsspecifika data eller egna antaganden använts vid modelleringen för att ge ett så rättvisande resultat som möjligt. De material som finns fördefinierade i VIP‑Energy har dock använts vid uppbyggnad av väggar, tak och grund. Modellen har justerats så att simuleringsresultaten efterliknat brukardata, och korrektions-faktorer har beräknats för att kompensera för avvikelser. För att ytterligare öka precisionen har zonberäkningsfunktionen i VIP‑Energy använts, och Undervisningshuset och Biblioteket har modellerats separat. Möjliga energieffektiviseringsåtgärder har studerats för sex olika områden – fönster, fasader, tak, ventilation, vattenanvändning och belysning. Solenergi kan tas tillvara i solcells-anläggningar (som producerar el), solvärmeanläggningar (som producerar värme) och solhybridanläggningar (som producerar både el och värme). Inom samtliga nämnda effektiviseringsområden har lönsamma åtgärder funnits, utom för fasader och tak. Av möjliga solenergilösningar är det endast solcellsanläggningar som är lönsamma för den aktuella byggnaden, och endast om investeringsbidrag kan erhållas. Ju större solcellsanläggningen är, desto mer lönsam blir den, och hur stor anläggning som väljs beror därför på Akademiska hus investeringsvilja. Anslutning till elcertifikatsystemet ökar lönsamheten. Totalt kan undersökta åtgärder ge en energibesparing på drygt 360 000 kWh/år, men den ekonomiskt realiserbara andelen utgör 176 000 kWh/år (49 %) av detta. Den totala investeringskostnaden för rekommenderade åtgärder blir 1 066 000 kr, vilket ger ett kapitalvärde på 883 000 kr, och besparingskostnaden blir 0,42 kr/kWh. Dessa åtgärder minskar kostnaden för energi och vatten med 150 000 kr/år, och beräknas ge ytterligare drygt 8 000 kr/år från elcertifikatsystemet. Utan hänsyn till ränta och prisutveckling blir återbetalningstiden sju år. De koldioxidutsläpp som energi- och vattenanvändningen ger upphov till minskar med 92 ton/år, men minskningens storlek är känslig för de antaganden som gjorts när utsläppsfaktorer beräknats. Om ändringen i elanvändning ska antas utgöras av medelel, blir minskningen endast 29 ton/år. Eftersom det rör sig om förändringar i elanvändning har dock marginalel ansetts vara det mest rimliga. Om torv räknas som förnybart istället för fossilt blir den totala utsläppsminskningen 76 ton/år. Vattenanvändningen i byggnaden minskar med 860 m3/år. Byggnadens specifika energianvändning sjunker med 20 % till 79 kWh/m2,år, förutsatt att hela minskningen i elanvändning räknas till fastighetsel. Inklusive verksamhetsel sjunker energianvändningen med 13 % till 129 kWh/m2,år. Åtgärderna ger dock en marginell ökning av fjärrkylabehovet. Det finns inte något direkt samband mellan hög energibesparing och högt kapitalvärde, då exempelvis fönsteråtgärderna ger högst energibesparing men lägst kapitalvärde. Vilka av de rekommenderade åtgärderna som bör prioriteras bestäms av om målet i första hand är att spara energi eller att maximera lönsamheten hos investeringen.
8

Funktionsupphandling av solelanläggningar / Functional Procurement of Photovoltaic Systems

Axelsson, Karin, Wiborgh, Malin January 2015 (has links)
This thesis aims to contribute to improved functional procurement of photovoltaic systems, PV systems. Functional procurement means that criteria concerning a function are set rather than specifying technical details or products. Possible advantages and difficulties in using functional procurement have been analyzed by interviews, simulations and a case study. Electricity production and surplus production for different scenarios have been simulated via MATLAB. The MATLAB script was also used to generate rules of thumb on feasible solar fraction for six different load profiles; a church, a farm, a car mechanic, an office, an industry and an apartment building. The results show that functional procurement promotes innovative solutions and is likely to increase customer satisfaction. The entrepreneurs get increased responsibility for the PV installation and the monitoring of it. Difficulties in using functional procurement of PV systems include uncertainties in irradiance and division of responsibilities. It is therefore important to define in what circumstances the functions should be met. The evaluation of the case study shows that the demands that were set were hard to accomplish, but if the maximum simulated surplus production would have been 6 % instead of 5 % of the summer weekdays, it would have been easier. The rules of thumb show that depending on load profile and accepted proportion of surplus production, the yearly solar fraction is between circa 10 % and 30 %. This number is lower for businesses that close during the summer and higher for businesses that have a load profile that corresponds well with the irradiance.
9

Solcellsanläggningars påverkan på elnätets spänningsnivåer : simulation av ett landsbygdsnät / Solar Plants and their Impact on the Power Grid Voltage Levels

Benjaminsson, Joakim, Hodzic, Lejla January 2019 (has links)
En väl fungerande energiförsörjning är en viktig del i det moderna samhället som aldrig tidigare varit så elberoende som det är nu. Spänningsvariationer är ett problem som kan innebära störningar i näten. Om andelen solcellsanläggningar fortsätter att öka kan vi hamna i ett läge där variationer i spänningen och omvända effektflöden ställer till med problem i elnäten. Sandhult-Sandareds Elektriska ekonomiska förening, som är studiens uppdragsgivare, har nyligen installerat en egen solcellsanläggning och intresset för att installera solceller ökar även bland deras kunder. Syftet med denna studie är att företaget skall få en uppfattning om hur mycket småskaligt producerad energi deras nät kan hantera. Det har även varit av intresse att se vilka spänningsnivåer som kan komma att bli aktuella i olika delar av nätet. Elnätets egenskaper har överförts och simulerats i Matlab Simscape Power Systems. Företagets ritningar över delar av elnätet i Sandhult blev utgångspunkten vid modelleringen av elnätet. De simuleringar som gjorts kan delas upp i två typer; ojämnt fördeladelproduktion, och jämnt fördelad elproduktion. En solcellsanläggning med varierande effekt har simulerats för att få en uppfattning om hur spänningen varierar vid ojämn elproduktion. För att se hur stor del jämnt fördelad elproduktion som kan ske utan att energi matas ut på transmissionsnätet har parametern för andel solelsproduktion successivt ökats. Vid en specifik nivå installerad effekt var andelen förbrukad och producerad energi lika stora i det aktuella nätet. Simuleringsresultaten visar att det inte bör innebära några större problem att installera 765kW solceller ute i nätet förutsatt att produktionen är någorlunda jämnt fördelad. Som tumregelföreslås att den totala installerade effekten i nätet, utan problem, bör kunna vara i samma storleksordning som medeleffekten under låg last. Resultaten visar även att man vid enstaka anläggningar kan producera förhållandevis stora mängder energi utan att spänningen påverkas på ett olämpligt sätt. / A well-functioning energy supply plays an important part in modern society, which today relies upon electricity more than ever before. Variations in voltage levels are a problem which could cause disruptions on the electrical grid. Should the amount of PV plants continue to increase, we could end up with a situation where voltage variations and reverse power flow cause problems to the grid. Sandhult-Sandareds Elektriska ekonomiska förening , the outsourcer of the task that underlies this study, recently installed a PV plant. The interest in these systems has increased among their customers as well. The purpose of this study is to give the company an idea of how much small-scale energy their electrical grid can handle. It has also been in their interest to see which voltage levels may occur in different parts of the grid. The properties of the electrical grid were transferred to and simulated in Matlab SimscapePower Systems. The grid schematics that were provided by the company constitute the blueprint for the grid modeling. The simulations made can be divided into two types; unevenly distributed electricity production, and evenly distributed electricity production. APV plant with varying power output was simulated to illustrate how the voltage level varies with uneven electricity production. In order to see how much evenly distributed electricity production is possible without energy being discharged on the transmission network, the proportion of solar power production was gradually increased. At a specific level of installed solar power, the proportion of consumed power was equal to the produced power. The results indicate that an installment of a 765 kW solar power would not induce any major problems to the grid, provided that the production is reasonably evenly distributed. As a general rule of thumb, the results suggest that the installed power in total well could be equal to the average power during periods of low energy use. The results also show that certain plants may produce relatively large amounts of energy without inducing inappropriate impact on the voltage levels.
10

Energieffektivitet av solceller på byggnaders fasader / Energy efficiency of solar cells on building facades

Abdalrahim, Jasser, Al Faraj, Issa January 2023 (has links)
Forskning inom solceller har traditionellt fokuserat på installationer på tak, men det finnssituationer där taket inte är lämpligt för solcellsapplikationer, till exempel på grund avbyggnadens utformning eller restriktioner i lagstiftningen. Dessutom kan skuggning frånomgivande byggnader påverka solcellernas effektivitet. För att övervinna dessa hinder ochmaximera effektiviteten undersöker studien solcellsanläggningar på fasader i olikatätbebyggda områden.Studiens syfte är att beskriva hur täthet i stadsbebyggelse påverkar lönsamheten medsolceller på fasader. Genom att undersöka energieffektiviteten och elproduktionen avsolceller installerade på fasader i olika tätbebyggda områden, strävar studien efter attidentifiera det optimala avståndet mellan byggnader för att uppnå effektivsolcellsanläggning. Målet är att skapa en översiktlig bild av energilönsamheten medsolceller på byggnaders fasader och stödja utvecklingen av hållbara energilösningar. För attuppnå detta syfte används en kombination av kvantitativa och kvalitativa metoder. Enlitteraturstudie genomfördes för att erhålla grundläggande kunskap om solceller och derastillämpningar på fasader. Visualisering med hjälp av SketchUp användes för att skapa3D-modeller av byggnaderna och undersöka skuggningens påverkan på solcellernasproduktion under olika årstider och tider på dagen. Energiberäkningar genomfördes medhjälp av PVsyst-programvaran för att analysera energiprestanda och dimensionerasolcellssystem. Studiens resultat visar att solcellsanläggningar på fasader i olika områdenkan ha varierande energieffektivitet och elproduktion. Specifikt framgår det att byggnadensläge i förhållande till tätbebyggelse påverkar solelproduktionen. Resultatet visar attsolanläggningen på hus 3, som ligger i centrala Malmö där byggnader vanligtvis ärplacerade med ett stort avstånd till varandra, producerar mest solel med en energieffektivitet på cirka 81 % jämfört med referensmodellen. Den solcellsanläggning somproducerar minst solel är på hus 1, fasad A, i Limhamn Sjöstad, där energieffektiviteten ärpå cirka 71,3 % jämfört med referensmodellen. Jämförelsen bygger på att den årligaelproduktionen för referensmodellen, det vill säga 7850,8 kWh, anses vara 100 %energieffektiv. Med avseende på framtida detaljplaner i Sverige förväntas stadsmiljönfortsätta vara tätbebyggd, och det är viktigt att hänsyn tas till befintlig bebyggelse ochbefintliga solcellsanläggningar för att långsiktig tillgång till solinstrålning ska säkerställas.Studien har relevans för att främja hållbarhet och energieffektivitet både vad gällernyproducerade och befintliga byggnader samt för att utforska potentialen för solceller påbyggnaders fasader. Studien belyser också behovet av ytterligare forskning för att utnyttjafasaders potential som en alternativ energikälla. Slutligen konstateras att det inte går attgeneralisera något krav på vilket det minsta avståndet mellan byggnader behöver vara föratt en effektiv solcellsanläggning ska uppnås. Man bör noga överväga faktorer somsolcellsanläggningens azimutvinkel, orientering samt höjden på närliggande byggnader / While solar cell research has traditionally focused on rooftop installations, there aresituations where the roof may not be suitable due to building design or legislativerestrictions. Additionally, shading from surrounding buildings can impact the efficiency ofsolar cells. To overcome these obstacles and maximize efficiency, the study explores solarpanel installations on facades in different densely built areas. The study aims to describehow urban density influences the energy profitability of solar panels on building facades.By employing a combination of quantitative and qualitative methods, including literaturereviews, 3D modeling, and energy calculations, the study analyzes the energy efficiencyand electricity production of facade-mounted solar cells in various densely built areas. Theresults demonstrate that solar panel installations on facades can exhibit varying efficiencyand electricity production, with the building's location in relation to surrounding structuresplaying a significant role. The study seeks to provide an overview of the energyprofitability of solar panels on building facades to support the development of sustainableenergy solutions in urban areas. Considering future urban planning, which is expected tomaintain high density, it becomes crucial to consider existing buildings and solar energyinstallations to ensure their long-term access to solar irradiation. The study is relevant inpromoting sustainability and energy efficiency in both new and existing buildings andexploring the potential of solar panels on building facades. It also highlights the need forfurther research to harness the potential of facades as an alternative energy source. Finally,it concludes that there is no generalized requirement for what the minimum distancebetween buildings needs to be for an efficient solar cell installation to be achieved,emphasizing the importance of considering factors such as the azimuth angle, orientation,and height of neighboring buildings.

Page generated in 0.0719 seconds