11 |
Normal brain tissue reaction after proton irradiationSuckert, Theresa Magdalena 09 December 2021 (has links)
Protonentherapie ist eine wichtige Behandlungsmodalität in der Radioonkologie. Aufgrund einer vorteilhaften Dosisverteilung im bestrahlten Volumen kann diese Bestrahlungsmethode das tumorumgebende Normalgewebe schützen. Dadurch können Nebenwirkungen in bestimmten Patientenpopulationen, zum Beispiel Kindern oder Patienten mit Gehirntumoren, verringert werden. Trotzdem können nach Protonenbestrahlung von Gehirntumorpatienten Normalgewebsschäden auftreten. Gründe dafür können der notwendige klinische Sicherheitssaum im Normalgewebe, der Einfluss der relativen biologischen Wirksamkeit RBE sowie eine erhöhte Strahlensensitivität bestimmter Gehirnregionen sein. Um diese Aspekte zu beleuchten, werden geeignete präklinische Modelle für die Normalgewebsreaktion im Gehirn nach Protonenbestrahlung benötigt. Darüber hinaus kann eine Risikostratifizierung der Patienten durch die Vorhersage von Nebenwirkungswahrscheinlichkeiten oder der Tumorantwort den Behandlungserfolg erhöhen. Auch hier können präklinische Modelle helfen, um neue prädiktive Biomarker zu finden und um die zugrunde liegenden Mechanismen strahleninduzierter Gehirnschäden besser zu verstehen. Das Ziel dieser Dissertation war die Etablierung und Charakterisierung von adäquaten präklinischen Modellen für die Untersuchung von strahleninduzierten Normalgewebsschäden im Gehirn. Diese Modelle bilden die Grundlage für zukünftige Studien zur Untersuchung von RBE Effekten, der spezifische Strahlensensitivität einzelner Gehirnregionen und neuer Biomarker. Die getesteten Modellsysteme waren in vitro Kulturen von adulten organotypischen Gehirnschnitten, Tumorschnittkultur sowie in vivo Bestrahlung von Gehirnsubvolumina, jeweils mit dem Modellorganismus Maus. Die Etablierung eines Bestrahlungssetups in der experimentellen Protonenanlage und dessen dosimetrische Charakterisierung waren von großer Bedeutung für die Durchführung der biologischen Experimente. Ein weiteres Hauptziel war die Definition klinisch relevanter Endpunkte für frühe und späte Nebenwirkungen. Die Gewebsschnitte wurden durch Messungen des Zellüberlebens und der Entzündungsreaktion, sowie mittels in situ Analyse von Zellmorphologie und DNA Schäden untersucht. Als ergänzendes Modell wurde die Tumorschnittkultur etabliert und ähnliche Endpunkte analysiert. Adulte Gehirnschnitte stellten sich als ungeeignet für präklinische Experimente in der Radioonkologie heraus. Die Messungen von Zelltod und Entzündungswerten zeigten eine starke Zellreaktion auf die Inkulturnahme, aber keine auf die Protonenbestrahlung. In der Histologie wurden gestörte Zellmorphologie, reduzierte Vitalität und eingeschränkte Reparaturfähigkeit von DNA Schäden beobachtet. Daher sollten für strahlenbiologische Experimente andere 3D Zellkulturmodelle in Betracht gezogen werden, wie zum Beispiel Organoide oder durch Tissue Engineering hergestellte Kulturen. Durch die Publikation der Daten leistet diese Dissertation einen wichtigen Beitrag zur aktuellen Forschung, da so künftig die limitierten Ressourcen, die für strahlenbiologische Experimente mit Protonen zur Verfügung stehen, auf relevantere Modelle verwendet werden können. Die Bestrahlung von Gehirnsubvolumina in Mäusen wurde mit dem Ziel etabliert, klinisch vergleichbare Felder zu erreichen. Das gewählte Zielvolumen war der rechte Hippocampus; der Protonenstrahl sollte in der Mitte des Gehirns stoppen. Im Rahmen des Projekts wurde ein Arbeitsablauf für präzise und reproduzierbare Bestrahlung entwickelt. Zur Verifizierung wurde der induzierte DNA Schaden ausgewertet und anschließend mit Monte-Carlos Dosissimulationen korreliert. Die Maushirnbestrahlung lieferte wertvolle Ergebnisse für frühe Zeitpunkte (d.h. innerhalb 24 h nach Bestrahlung). Im Verlauf des Projekts wurde ein Algorithmus erstellt, der schnell und zuverlässig die räumliche Verteilung des DNA Schadens in Relation zur Gesamtzellzahl analysiert. Diese Auswertung zeigte, wie bei der Bestrahlungsplanung vorgesehen, ein Stoppen des Protonenstrahls im Gehirn. Eine anschließende Korrelation der Schadensverteilung mit der applizierten Dosis weist nach, dass das Modell einen wichtigen Beitrag zur Untersuchung des RBE leisten kann. In einer darauf folgenden Studie wurde der Dosis-Zeitverlauf der beobachteten Strahlenreaktion des Normalgewebes genauer beleuchtet. Dafür wurden Untersuchungen des Allgemeinzustands der Versuchstiere, regelmäßige Magnetresonanztomografie (MRI) Messungen über einen Zeitraum von sechs Monaten, sowie abschließende Histologie korreliert. Die Volumenzunahme des Kontrastmittelaustritts, die den Zusammenbruch der Blut-Hirn-Schranke anzeigt, wurde konturiert; aus diesen Daten entstand ein prädiktives Dosis-Volumen Modell. Die Pilotstudie konnte eine dosisabhängige Strahlenreaktion nachweisen, die sich im Zusammenbruch der Blut-Hirn-Schranke, einer Hautreaktion mit vorrübergehender Alopezie, Gewichtsabnahme und zelluläre Veränderung äußerte. Das von den MRI Messungen abgeleitete Modell konnte zuverlässig das Eintreten der Nebenwirkungen, den Krankheitsverlauf, sowie die geschätzte Überlebensdauer der Mäuse vorhersagen. Zusätzlich konnte ein Zusammenhang zwischen den MRI Bildänderungen und den pathologischen Gewebsveränderungen beobachtet werden. Durch die außerordentlich homogene Strahlenreaktion der Tiere können aus den vorliegenden Daten künftig zuverlässig geeignete Dosen für spezifische experimentelle Endpunkte bestimmt werden. Zusammenfassend wurden in dieser Arbeit zwei präklinische Modelle für die Protonengehirnbestrahlung etabliert, nämlich organotypische Gewebsschnitte als 3D Zellkulturmodell sowie in vivo Bestrahlung von Gehirnsubvolumina in Mäusen. Während Zellkulturexperimente die Erwartungen nicht erfüllen konnten, stellen sich die Tierexperimente als hervorragendes Modell für translationale Radioonkologie heraus, welches zusätzlich für andere Strahlenqualitäten eingesetzt werden kann. Darauf basierend können aktuelle und zukünftige Studien die Ursachen von strahleninduzierten Normalgewebsschäden im Gehirn beleuchten, RBE Effekte untersuchen und neue prädiktive Biomarker erforschen.:Contents
Abstract i
Zusammenfassung v
Publications ix
List of Figures xiii
List of Acronyms and Abbreviations xiv
1 Introduction 3
2 Background 5
2.1 Proton therapy for brain cancer treatment 5
2.1.1 Fundamentals of radiobiology 5
2.1.2 Proton therapy 6
2.1.3 Tumors of the central nervous system 8
2.2 Radiation effects on brain cells 8
2.2.1 Neurons and myelin 9
2.2.2 Blood-brain barrier 9
2.2.3 Astrocytes 10
2.2.4 Microglia 10
2.3 Principles of histology 11
2.3.1 Hematoxylin & eosin staining 12
2.3.2 Immunohistochemistry 13
2.3.3 Bioimage analysis 13
2.4 Techniques in medical imaging 14
2.4.1 Projectional radiography 14
2.4.2 Computed tomography 14
2.4.3 Magnetic resonance imaging 15
2.5 Preclinical models for radiation injury 17
2.5.1 Technical requirements 17
2.5.2 In vitro models 17
2.5.3 Small animal models 18
3 Applying Tissue Slice Culture in Cancer Research – Insights from Preclinical Proton Radiotherapy 19
3.1 Aim of the study 19
3.2 Conclusion 19
3.3 Author’s contribution 19
3.4 Publication 21
4 High-precision image-guided proton irradiation of mouse brain sub-volumes 41
4.1 Aim of the study 41
4.2 Conclusion 41
4.3 Author’s contribution 41
4.4 Publication 43
5 Late side effects in normal mouse brain tissue after proton irradiation 51
5.1 Aim of the study 51
5.2 Conclusion 51
5.3 Author’s contribution 52
5.4 Publication 53
6 Discussion 71
6.1 Establishment of preclinical models for radiooncology 71
6.1.1 3D cell culture 71
6.1.2 In vivo irradiation of brain subvolumes 73
6.2 Current applications of the mouse model 75
6.2.1 Ongoing data analysis 75
6.2.2 Innovating on-site imaging 76
6.2.3 RBE investigations 77
6.3 Future studies of radiation-induced brain tissue toxicities 79
Acknowledgement XV
Supplementary Material XVII
1 Applying Tissue Slice Culture in Cancer Research – Insights from Preclinical Proton Radiotherapy XVII
2 High-precision image-guided proton irradiation of mouse brain sub-volumes XXVI
3 Late side effects in normal mouse brain tissue after proton irradiation XXXI / Proton therapy is an important modality in radiation oncology. Due to a favorable dose distribution in the irradiated volume, this treatment allows to spare tumor-surrounding normal tissue. Although this protection can lead to reduced side effects in certain patient populations, such as brain tumor or pediatric patients, normal tissue toxicities can occur to some extend. This could be due to clinical safety margins around the tumor that lead to dose deposition in the normal tissue. The underlying causes might also be related to relative biological effectiveness (RBE) variations or elevated radiosensitivity of certain brain regions. To address these issues, suitable preclinical models for normal brain tissue reaction after proton therapy are needed. In addition, patient stratification to predict the tumor response or the probability of side effects will contribute to increased treatment effectiveness. Preclinical models can improve the process of finding new predictive biomarkers and help to understand underlying mechanisms of radiation-induced brain injury. The aim of this thesis was to establish and characterize suitable preclinical models of brain tissue irradiation effects and set the base for future studies designed to reveal RBE effects, brain region specific radiation sensitivities, and novel biomarkers. The tested model systems were in vitro organotypic brain slice culture (OBSC) and in vivo irradiation of brain subvolumes, both on mouse brain tissue. Setup establishment at the experimental proton beam line and subsequent dosimetry built the foundation for conducting the biological experiments. Additionally, one main goal was defining clinically relevant endpoints for both short- and long-term effects. For OBSC, assays for cell death and inflammation, as well as in situ analysis of cell morphology and DNA damage induction were tested. As comparative model to OBSC, tumor slice culture was established and the results were also used for proton investigation. Adult OBSC turned out as inadequate model for preclinical experiments in radiation oncology. The assays measuring cell death and inflammation indicated a severe reaction during the first days in culture, but no response to irradiation. Histology revealed deficient cell morphology, reduced vitality and impaired DNA damage repair. In conclusion, other 3D cell culture models, such as organoids or tissue engineered constructs, should be considered for radiobiological experiments with protons. By publishing the observations, this thesis contributes to conserving the limited resources of proton radiobiology for more meaningful models. A methodology for irradiation of mouse brain subvolumes was established with a focus on creating fields comparable to clinical practice. The chosen target was the right hippocampus and the goal was to stop the proton beam in the middle of the brain. The project included a workflow for this precise irradiation in a robust and reproducible manner. Evaluation of the induced DNA damage and its correlation to Monte Carlo dose simulations were used for verification. Irradiation of mouse brain subvolumes yielded valuable results for early (i.e. within 24 h after irradiation) time points. An evaluation algorithm was designed for fast and robust analysis of spatial DNA damage distribution in relation to the total cell count. This ratio showed that the beam stopped in the brain tissue, in accordance to the treatment planning. Furthermore, the DNA damage could be reliably correlated with the dose simulation, which proves the value of the presented model for future RBE studies. In a follow-up experiment, the dose-time relationship of induced normal tissue reactions was analysed. For this, scoring of the animals' health status was combined with regular MRI measurements over the course of up to 6 months, and final histopathology. The volume increase of contrast agent leakage - representing breakdown of the blood brain barrier (BBB) - was contoured and the data was used to create a dose-volume response model. This pilot study on long-term radiation effects revealed dose-dependent normal tissue toxicities, including breakdown of the BBB, a skin reaction with temporary alopecia, weight reduction and changes on the cellular level. The model derived from MRI data reliably predicts onset of side effects, volume of brain damage as well as the expected animal survival. In addition, MRI image changes could be correlated to underlying tissue alterations by histopathology. Due to the uniform radiation response of the animals this data set enables to determine endpoint-specific dose values in future experiments. In conclusion, two preclinical models for proton brain irradiation were established, namely OBSC as 3D cell culture model and in vivo irradiation of mouse brain subvolumes. While the former could not yield the anticipated results, the latter emerged as excellent model for translational radiooncology, which can also be applied for experiments with other radiation types. Ongoing and future studies will focus on revealing the causes of normal brain tissue toxicities, studying RBE effects, and investigating new predictive biomarkers.:Contents
Abstract i
Zusammenfassung v
Publications ix
List of Figures xiii
List of Acronyms and Abbreviations xiv
1 Introduction 3
2 Background 5
2.1 Proton therapy for brain cancer treatment 5
2.1.1 Fundamentals of radiobiology 5
2.1.2 Proton therapy 6
2.1.3 Tumors of the central nervous system 8
2.2 Radiation effects on brain cells 8
2.2.1 Neurons and myelin 9
2.2.2 Blood-brain barrier 9
2.2.3 Astrocytes 10
2.2.4 Microglia 10
2.3 Principles of histology 11
2.3.1 Hematoxylin & eosin staining 12
2.3.2 Immunohistochemistry 13
2.3.3 Bioimage analysis 13
2.4 Techniques in medical imaging 14
2.4.1 Projectional radiography 14
2.4.2 Computed tomography 14
2.4.3 Magnetic resonance imaging 15
2.5 Preclinical models for radiation injury 17
2.5.1 Technical requirements 17
2.5.2 In vitro models 17
2.5.3 Small animal models 18
3 Applying Tissue Slice Culture in Cancer Research – Insights from Preclinical Proton Radiotherapy 19
3.1 Aim of the study 19
3.2 Conclusion 19
3.3 Author’s contribution 19
3.4 Publication 21
4 High-precision image-guided proton irradiation of mouse brain sub-volumes 41
4.1 Aim of the study 41
4.2 Conclusion 41
4.3 Author’s contribution 41
4.4 Publication 43
5 Late side effects in normal mouse brain tissue after proton irradiation 51
5.1 Aim of the study 51
5.2 Conclusion 51
5.3 Author’s contribution 52
5.4 Publication 53
6 Discussion 71
6.1 Establishment of preclinical models for radiooncology 71
6.1.1 3D cell culture 71
6.1.2 In vivo irradiation of brain subvolumes 73
6.2 Current applications of the mouse model 75
6.2.1 Ongoing data analysis 75
6.2.2 Innovating on-site imaging 76
6.2.3 RBE investigations 77
6.3 Future studies of radiation-induced brain tissue toxicities 79
Acknowledgement XV
Supplementary Material XVII
1 Applying Tissue Slice Culture in Cancer Research – Insights from Preclinical Proton Radiotherapy XVII
2 High-precision image-guided proton irradiation of mouse brain sub-volumes XXVI
3 Late side effects in normal mouse brain tissue after proton irradiation XXXI
|
12 |
Risques de complications associés à la radiothérapie externe : étude comparative des doses délivrées aux tissus sains par les techniques avancées de radiothérapie / Complications risk related to external radiotherapy : comparative study of doses delivered to healthy tissues by cutting-edge radiotherapy techniquesColnot, Julie 11 October 2019 (has links)
Les techniques modernes de radiothérapie externe permettent de délivrer précisément la dose à la tumeur. Ce gain en précision se fait cependant au prix de l’irradiation d’un volume plus important de tissus sains alors susceptibles de développer des lésions radio-induites. Aujourd’hui, les risques de complications représentent un enjeu sociétal important, car l’efficacité des traitements permet aux patients une espérance de vie plus longue, augmentant ainsi la probabilité d’effets secondaires à moyen et à long terme. Cependant, l’estimation des risques est conditionnée par une connaissance précise des doses délivrées aux organes sains, directement corrélées aux risques de complications. Ces doses restent encore méconnues, car renseignées de manière incomplète et imprécise par les systèmes de planification de traitement (TPS). Dans ce contexte, l’objectif de la thèse est d’évaluer avec précision les doses délivrées aux tissus sains par les techniques avancées de radiothérapie. D’une part, une étude comparative des doses délivrées aux tissus sains par différentes techniques avancées a été réalisée et, d’autre part, les performances, en termes d’évaluation des doses aux tissus sains des algorithmes des TPS ont été évaluées. Des méthodes numériques et expérimentales ont donc été développées. Tout d’abord, un modèle Monte-Carlo PENELOPE de l’accélérateur Cyberknife a été étendu et validé en 1D et 2D pour l’évaluation des doses hors champ. Ce modèle a ensuite été utilisé pour déterminer les doses délivrées aux tissus sains lors d’un traitement de la région pulmonaire. Cette étude a ainsi permis de fournir des données d’entrée pour les modèles de risque et enfin, de mettre en évidence l’apport en précision de la simulation Monte-Carlo détaillée par rapport au TPS. De plus, un outil expérimental de reconstruction de la dose en 3D à partir de mesures par films radiochromiques a été développé. Un protocole de dosimétrie par gel dosimétrique a également été mis en place. Après validation en 2D et en 3D, l’outil de reconstruction a été mis en œuvre pour comparer les doses délivrées aux tissus sains par trois techniques de radiothérapie (conformationnelle, VMAT et tomothérapie) pour un traitement rénal pédiatrique. Bien que les techniques avancées offrent une excellente conformation, les tissus sains reçoivent des doses jusqu’à 3 fois plus élevées en comparaison avec la radiothérapie conformationnelle. La tomothérapie, disposant d’un blindage supplémentaire, épargne mieux les tissus que le VMAT. Finalement, contrairement à Eclipse™, le TPS de la tomothérapie détermine précisément des doses délivrées jusqu’à 30 cm du champ. / Advanced radiotherapy techniques enable highly conformal dose distribution to the tumor. This higher precision is made at the cost of an increased tissue volume receiving low doses. The exposed organs are then susceptible to develop radio-induced lesions. Nowadays, risks of complications represent an important societal challenge as survival rates are increasing due to treatment efficacy and therefore the risk for a subsequent effect also increases. However, risk assessment requires a precise knowledge of the doses delivered to healthy organs, directly correlated to the risk of complications. Those doses are still unknown as calculated incorrectly by the treatment planning systems (TPS). Within this context, this thesis aims at precisely determining the doses delivered to normal tissues by advanced radiotherapy techniques. On the one hand, a comparative study of the doses delivered by different modern techniques was performed and on the other hand, the performance of the TPS dose computation algorithms was evaluated in terms of healthy tissue doses. Thus, numerical and experimental tools have been developed in this work. First, a PENELOPE Monte-Carlo model of a CyberKnife system has been extended and validated in 1-D and 2-D to determine out-of-field doses. This model was then used to evaluate the doses delivered to healthy tissue by a pulmonary treatment. This study provides requisite dosimetric data to evaluate the risks associated to the treatment and finally, it highlights the important precision of detailed Monte-Carlo simulation in comparison with the TPS. Moreover, an experimental 3-D reconstruction tool was developed thanks to radiochromic film measurements. A protocol of gel dosimetry was also established. After 2-D and 3-D validation, the 3-D tool was applied to compare the doses delivered by three radiotherapy techniques (conformational, VMAT and tomotherapy) in a pediatric renal treatment. While advanced techniques deliver highly conformal dose distribution, the doses to organs located at distance of the target are considerably increased up to a factor 3 in comparison with conformal radiotherapy. The tomotherapy spares the healthy tissues compared to VMAT due to its additional shielding. Finally, unlike Eclipse™, the TPS Tomotherapy enables a precise dose evaluation up to 30 cm from the field edge.
|
13 |
AsiDNA, a Unique DNA Repair Inhibitor, Triggers Sensitization and Bioenergetic Adaptation in Cancer Cells / AsiDNA, un inhibiteur unique de l’ADN, conduit à la sensibilisation et l’adaptation bioénergétique des cellules cancéreusesKozlak, Maria 15 May 2019 (has links)
Le but d’un traitement anticancéreux est d’être spécifique et efficacité dans la durée vis-à-vis des cellules tumorales. De nombreux agents chimiothérapeutiques ont rencontré des obstacles quant à leur utilisation en raison de leur toxicité pour les cellules saines ou de la résistance développée par les cellules cancéreuses. Cela souligne la nécessité de développer des médicaments alternatifs. Notre laboratoire a développé une classe d'inhibiteurs de réparation de l'ADN, Dbait, qui agissent en détournant et en hyperactivant les protéines de la réparation de l’ADN, telles que la protéine PARP et DNA-PK. Cela conduit en conséquence à des modifications de la chromatine, visualisées par la phosphorylation pan-nucléaire de l’histone H2AX, et en l’inhibition du recrutement aux sites des dommages de plusieurs protéines de réparation. AsiDNA, une forme active de Dbait, sensibilise les tumeurs aux radiations, à la chimiothérapie, à la thérapie ciblée, sans effet sur les cellules non tumorales et les tissus sains. Dans la mesure où la chimiothérapie consiste en des traitements cycliques de l'agent anti-cancéreux, l'objectif de cette étude était d'étudier in vitro les conséquences d’un traitement répété d’AsiDNA sur les cellules tumorales et non tumorales, plus particulièrement pour ce qui concerne l’émergence de clones tumoraux résistants ou inversement de clones non tumoraux devenus sensibles au traitement. Dans un premier temps, nous avons conçu des expériences dans le but d'isoler des clones résistants au traitement par AsiDNA. Nous montrons que des traitements cycliques ne conduisent pas à des clones résistants, mais au contraire à la sélection de cellules tumorales caractérisées par une hyper sensibilité à l'AsiDNA. Cette sensibilité acquise est stable dans le temps et n'a jamais été observée en traitant des cellules non tumorales. Afin d’identifier le(s) mécanisme(s) responsable(s) de cette sensibilité acquise, nous avons comparé des cellules de sein non tumorales (MCF-10A) et tumorales triples négatives (MDA-MB-231) après 3 trois cycles de traitement par AsiDNA. Nous montrons que les traitements cycliques d'AsiDNA causent une inhibition de l'expression génique, essentiellement au niveau de gènes impliqués dans la réparation de l'ADN, le cycle cellulaire et la prolifération. Néanmoins, aucune différence dans la capacité de réparation de l'ADN, la progression du cycle cellulaire et le taux de prolifération n'est observable. Les cellules cancéreuses augmentent les voies métaboliques énergétiques pour produire d’énergie nécessaire à leur prolifération. En tenant compte du fait que l’expression de certains gènes impliqués dans les voies métaboliques sont aussi dérégulées par le traitement cyclique d’AsiDNA, nous avons émis l’hypothèse que l’épuisement métabolique pouvait être responsable de la sensibilisation des cellules tumorales à l’AsiDNA. Une étude du métabolome a révélé une dérégulation de plusieurs métabolites incluant NAD+. Nous montrons que cette dérégulation bioénergétique est responsable de l'hypersensibilité acquise des cellules cancéreuses suite au traitement par AsiDNA. Une étude bioénergétique des cellules tumorales non traitées et sélectionnées après les traitements cycliques par AsiDNA confirment une diminution de glycolyse aérobique et de la phosphorylation oxydative dans ces dernières. En conséquence de cette réduction énergétique, les cellules cancéreuses ont perdu leur caractère malin, ce qui est démontré par une inhibition de la migration et de la formation de tumeur. Nous montrons que les cellules tumorales dérivées de traitements cycliques par AsiDNA sont dépourvues de cellules souches cancéreuses dont les caractéristiques sont leur résistance aux drogues et leur phénotype invasif. En conclusion, à côté de son rôle dans l'inhibition de la réparation de l'ADN, AsiDNA interfère également avec le métabolisme énergétique des cellules cancéreuses. / The goal of anti-cancer treatment is long term specificity and efficacy towards cancer cells. Many of the clinically available chemotherapy have encountered obstacles due to their toxicity towards healthy cells or to development of resistance by the cancer cells. This emphasizes the need for development of alternative drugs. Our laboratory developed an original class of DNA repair inhibitor, Dbait, that acts by hijacking and hyper activating DNA repair proteins involved in repairing DNA breaks, such as PARP and DNA-PK. Consequently, this leads to chromatin modification, as revealed by pan-nuclear phosphorylation of H2AX, and inhibition of the recruitment at the damage site of several DNA repair proteins at the damage site. AsiDNA, an active form of Dbait linked to a cholesterol moiety, sensitizes tumours, and not non-tumour cells, to radiation, chemotherapy, targeted therapy. As most of clinical protocols of chemotherapy involve cyclic treatments, the aim of this study was to investigate consequences of cyclic AsiDNA treatment in vitro on non-tumor and tumor cells, conditions that experience cancer patients during chemotherapy. Particular emphasis was paid to emergence of resistant clones during cyclic AsiDNA treatment of tumour cells and emergence of toxicity toward normal cells. At first, various tumor and non-tumor cells were exposed to cyclic treatments consisting of one week of treatment and one week of drug-free recovery. After few cycles of treatment, we didn’t observe toxicity toward normal cells and we failed to isolate resistant clones to AsiDNA from tumor cells. Importantly, this treatment protocol induced resistance of MDA-MB-231 cells to imatinib or PARPi. Unexpectedly, we observed that sensitivity to AsiDNA increased with repeated cycles in tumor cells. This acquired sensitization was stable over time and was never observed in non-tumor cells. In an attempt to understand the specific and acquired sensitization of tumor cells along treatment, we compared non-tumor (MCF-10A) and triple-negative breast cancer (MDA-MB-231) cells that were exposed (3CAsiDNA) or not (3CMT) to 3 rounds of AsiDNA. Transcriptome analysis of MDA-MB-231 revealed global downregulation of transcription after cyclic AsiDNA treatment. Although the expression of genes involved in DNA repair, cell cycle and proliferation, was highly affected, strikingly no clear difference in DNA repair capacity, cell cycle or proliferation rate was observed between MDA-MB-231_3CAsiDNA and MDA-MB-231_3CMT. In contrary, modification of gene expression was weakly affected in non-tumor cells.As impaired DNA repair capacity or cell cycle deregulation couldn’t explain this acquired sensitivity, therefore alternative mechanisms should account for the higher mortality of cyclic treated AsiDNA cells. Cancer cells upregulate energy metabolic pathways to produce enough energy for cell proliferation and repair. Noteworthy, AsiDNA is a PARP activator requiring NAD+ consumption. Based on the fact that metabolic pathways were also deregulated at the transcriptional level, we hypothesized that metabolic exhaustion may be responsible for AsiDNA induced sensitization. Metabolome study revealed deregulation of several metabolites including NAD+. We showed that this bioenergetics deregulation is responsible for increasing sensitivity to AsiDNA. Bioenergetics study confirmed low metabolic activity after repeated AsiDNA treatment due to deregulating aerobic glycolysis and oxidative phosphorylation. As a consequence of energetic deprivation, cancer cells deregulated their malignant behavior by inhibition of migration and tumor formation. We showed that 3CAsiDNA tumor cells are depleted of cancer stem cells, which features are responsible of drug resistance and cancer invasive phenotype. Altogether, we demonstrated that AsiDNA, beside its role in DNA repair inhibition, also interferes with energy metabolism in cancer cells.
|
14 |
Modélisation flexible du risque d’événements iatrogènes radio-induits / Flexible modeling of radiation-induced adverse events riskBenadjaoud, Mohamed Amine 27 March 2015 (has links)
La radiothérapie occupe une place majeure dans l’arsenal thérapeutique des cancers.Malgré des progrès technologiques importants depuis près de vingt ans, des tissus sains au voisinage ou à distance de la tumeur cible continuent à être inévitablement irradiés à des niveaux de doses très différents. Ces doses sont à l’origine d’effets secondaires précoces (Œdème, radionécrose, Dysphagie, Cystite) ou tardifs (rectorragies, télangiectasie, effets carcinogènes, les pathologie cérébrovasculaires).Il est donc primordial de quantifier et de prévenir ces effets secondaires afin d'améliorer la qualité de vie des patients pendant et après leur traitement.La modélisation du risque d'événements iatrogènes radio-induits repose sur la connaissance précise de la distribution de doses au tissu sain d'intérêt ainsi que sur un modèle de risque capable d'intégrer un maximum d'informations sur le profil d'irradiation et des autres facteurs de risques non dosimétriques. L'objectif de ce travail de thèse a été de développer des méthodes de modélisation capables de répondre à des questions spécifiques aux deux aspects, dosimétriques et statistiques, intervenant dans la modélisation du risque de survenue d'événements iatrogènes radio-induits.Nous nous sommes intéressé dans un premier temps au développement d'un modèle de calcul permettant de déterminer avec précision la dose à distance due au rayonnements de diffusion et de fuite lors d'un traitement par radiothérapie externe et ce, pour différentes tailles des champs et à différentes distances de l'axe du faisceau. Ensuite, nous avons utilisé des méthodes d'analyse de données fonctionnelles pour développer un modèle de risque de toxicité rectales après irradiation de la loge prostatique. Le modèle proposé a montré des performances supérieures aux modèles de risque existants particulièrement pour décrire le risque de toxicités rectales de grade 3. Dans le contexte d'une régression de Cox flexible sur données réelles, nous avons proposé une application originale des méthodes de statistique fonctionnelle permettant d'améliorer les performances d'une modélisation via fonctions B-splines de la relation dose-effet entre la dose de radiation à la thyroïde.Nous avons également proposé dans le domaine de la radiobiologie une méthodes basée sur l’analyse en composantes principales multiniveau pour quantifier la part de la variabilité expérimentale dans la variabilité des courbes de fluorescence mesurées. / Radiotherapy plays a major role in the therapeutic arsenal against cancer. Despite significant advances in technology for nearly twenty years, healthy tissues near or away from the target tumor remain inevitably irradiated at very different levels of doses. These doses are at the origin of early side effects (edema, radiation necrosis, dysphagia, cystitis) or late (rectal bleeding, telangiectasia, carcinogenic, cerebrovascular diseases). It is therefore essential to quantify and prevent these side effects to improve the patient quality of life after their cancer treatment.The objective of this thesis was to propose modelling methods able to answer specific questions asked in both aspects, dosimetry and statistics, involved in the modeling risk of developing radiation-induced iatrogenic pathologies.Our purpose was firstly to assess the out-of-field dose component related to head scatter radiation in high-energy photon therapy beams and then derive a multisource model for this dose component. For measured doses under out-of-field conditions, the average local difference between the calculated and measured photon dose is 10%, including doses as low as 0.01% of the maximum dose on the beam axis. We secondly described a novel method to explore radiation dose-volume effects. Functional data analysis is used to investigate the information contained in differential dose-volume histograms. The method is applied to the normal tissue complication probability modeling of rectal bleeding for In the flexible Cox model context, we proposed a new dimension reduction technique based on a functional principal component analysis to estimate a dose-response relationship. A two-stage knots selection scheme was performed: a potential set of knots is chosen based on information from the rotated functional principal components and the final knots selection is then based on statistical model selection. Finally, a multilevel functional principal component analysis was applied to radiobiological data in order to quantify the experimental Variability for replicate measurements of fluorescence signals of telomere length.
|
15 |
Quantification of Radiation Induced DNA Damage Response in Normal Skin Exposed in Clinical SettingsSimonsson, Martin January 2011 (has links)
The structure, function and accessibility of epidermal skin provide aunique opportunity to study the DNA damage response (DDR) of a normaltissue. The in vivo response can be examined in detail, at a molecularlevel, and further associated to the structural changes, observed at atissue level. We collected an extensive skin biopsy material frompatients undergoing fractionated radiotherapy for 5 to 7 weeks. Several end-points inthe DDR pathways were examined before, during and after the treatment. Quantification of DNA double strand break (DSB) signalling focirevealed a hypersensitivity to doses below 0.3Gy. Furthermore, aconsiderable amount of foci persisted between fractions. The low dosehypersensitivity was observed throughout the treatment and was alsoobserved for several key parameters further downstream in the DDR-pathway, such as p21-associated checkpoint activation, apoptosisinduction and reduction in basal keratinocyte density (BKD).Furthermore, for dose fractions above 1.0 Gy, a distinct acceleration inDDR was observed half way into treatment. This was manifested as anaccelerated loss of basal keratinocytes, mirrored by a simultaneousincrease in DSBs and p21 expression. Quantifications of mitotic events revealed a pronounced suppression ofmitosis throughout the treatment which was clearly low dosehypersensitive. Thus, no evidence of accelerated repopulation could beobserved for fraction doses ranging from 0.05 to 2Gy. Our results suggest that the keratinocyte response primarily isdetermined by checkpoints, which leads to pre-mitotic cell elimination by permanent growth arrest and apoptosis. A comparison between the epidermal and dermal sub-compartments revealsa consistent up-regulation of the DDR response during treatment. Adifference was however observed in the recovery phase after treatment,where miR-34a and p21 remain up-regulated in dermis more persistentlythan in epidermis. Our observations suggest that the recovery phaseafter treatment can provide important clues to understand clinicalobservations such as the early and late effects observed in normaltissues during fractionated radiotherapy.
|
16 |
Extratumoral effects of highly aggressive prostate cancer / Aggressiv prostatacancer : tidig påverkan i extratumoral vävnadStrömvall, Kerstin January 2017 (has links)
Prostate cancer (PC) is the most common cancer in Sweden. Most patients have slow growing tumors that will not cause them any harm within their lifetime, but some have aggressive tumors and will die from their disease. The ability of current clinical practice to predict tumor behavior and disease outcome is limited leading to both over- and undertreatment of PC patients. The men who die from their disease are those that develop metastases. It is therefore of great value to find better and more sensitive prognostic techniques, so that metastatic spread can be detected (or predicted) at an early time point, and so that appropriate treatment can be offered to each subgroup of patients. The aim of this thesis was to investigate if, and by what means, highly aggressive prostate tumors influence extratumoral tissues such as the non-malignant parts of the prostate and regional lymph nodes (LN), and also if any of our findings could be of prognostic importance. Gene- and protein expression analysis were the main methods used to address these questions. Our research group has previously introduced the expression Tumor Instructed (Indicating) Normal Tissue (TINT), and we use the term TINT-changes when referring to alterations in non-malignant tissue due to the growth of a tumor nearby or elsewhere in the body. In the Dunning rat PC-model we found that MatLyLu (MLL)-tumors, having a high metastatic ability, caused pre-metastatic TINT-changes that differ from those caused by AT1-tumors who have low metastatic ability. Prostate-TINT surrounding MLL-tumors had elevated immune cell infiltration, and gene ontology enrichment analysis suggested that biological functions promoting tumor growth and metastasis were activated in MLL- while inhibited in AT1-prostate-TINT. In the regional LNs we found signs of impaired antigen presentation, and decreased quantity of T cells in the MLL-model. One of the downregulated genes in the MLL-LNs was Siglec1 (also known as Cd169), expressed by LN resident macrophages that are important for antigen presentation. When examining metastasis-free LN tissue from PC patients we found CD169 expression to be a prognostic factor for PC-specific survival, and reduced expression was linked to an increased risk of PC-specific death. Some of our findings in prostate- and LN-TINT could be seen already when the tumors were very small suggesting that differences in TINT-changes between tumors with different metastatic capability can be detected early in tumor progression. However, before coming of use in the clinic more research is needed to better define a suitable panel of prognostic TINT-factors as well as the right time window of when to use them. / Populärvetenskaplig sammanfattning Prostatacancer är den i särklass vanligaste cancerformen hos män i Sverige. De flesta patienter har en mycket långsamt växande tumör som inte orsakar dem några större besvär under deras livstid, men enbart i Sverige dör ca 2500 patienter/år av sjukdomen. Det är först vid uppkomst av metastaser som sjukdomen blir dödlig. Befintliga diagnos- och prognosmetoder är otillräckliga när det gäller att uppskatta och förutse tumörens aggressivitet och risk för att bilda metastaser. Detta gör att vissa patienter inte får tillräcklig behandling eller behandlas försent medan andra behandlas i onödan. Behovet av förbättrad diagnostik är därför stort. Om vi kan hitta markörer för potentiellt metastaserande sjukdom, och i bästa fall också behandla innan metastaser uppstår, skulle det förbättra chansen för överlevnad markant. För att kunna växa och spridas behöver en tumör inte bara förbereda närliggande vävnader utan förmodligen hela kroppen. Vår hypotes är att potentiell dödliga tumörer sannolikt är bättre på detta än mer ofarliga. Man vet från studier av andra cancerformer att farliga tumörer orsakar förändringar i det organ dit cancern senare sprids. Dessa förändringar sker för att de tumörceller som senare anländer ska kunna överleva, och processen har fått namnet pre-metastatisk nisch. Bl.a. har man sett att immunsystemet hämmas och nybildning av kärl ökar. Det är vanligt att metastaser uppstår i närliggande lymfkörtlar innan uppkomst av metastaser i andra organ. Dock är väldigt lite känt om pre-metastatiska förändringar i lymfkörtlar eftersom den forskning som hittills är gjord främst har tittat på andra organ. Inom prostatacancer finns det förvånande få studier av premetastatiska nischer överhuvudtaget, och man vet därför inte om de alls förekommer eller vilka förändringar som i så fall sker. Vår grupp har tidigare myntat uttrycket TINT som står för Tumor Instructed (Indicating) Normal Tissue (TINT är ett engelskt verb som betyder färga) och syftar på förändringar i normal vävnad som inducerats av tumören, dvs. att tumörer färgar av sig på omgivningen. Det kan vara förändringar i normal vävnad nära tumören, som i det här fallet resten av prostatan, eller i vävnad långt ifrån tumören som till exempel regionala lymfkörtlar, lungor och benmärg. Syftet med det här avhandlingsarbetet var att undersöka TINT-förändringar inducerade av aggressiv cancer och se om dessa skiljer sig från TINT-förändringar inducerade av mindre farliga tumörer, samt att utvärdera om någon TINT-förändring skulle kunna användas för att prognostisera vilka patienter som har hög risk att få metastaser. Vi har använt oss av en prostatacancer-modell i råtta där vi analyserat genoch proteinuttryck i pre-metastatiska regionala lymfkörtlar, tumörer och prostata-TINT (dvs. prostatavävnad utanför tumören). TINT-förändringar inducerade av MatLyLu (MLL), en tumör med hög metastaserande förmåga, jämfördes mot TINT-förändringar inducerade av AT1, en snabbväxande tumör men med låg förmåga att bilda metastaser. Vi kunde vi se flera skillnader mellan modellerna. Genuttrycket i MLL-prostata-TINT indikerade en aktivering av cellulära funktioner som visat sig stimulera tumörväxt och spridning såsom celldelning, viabilitet, migration, invasion, och angiogenes (nybildning av kärl). I AT1-prostata-TINT var genuttrycket kopplat till samma funktioner men verkade istället inhibera dessa. Genom att titta på vävnaderna i mikroskop kunde vi se att MLL-tumörer rekryterade färre T-celler (som har en viktig funktion i immunsvaret mot tumören), men istället fler makrofager och granulocyter till både tumören och prostata-TINT (dessa typer av immunceller har visats kunna hjälpa tumörer att växa och sprida sig). MLL-tumörer hade också fler blodkärl och lymfkärl strax utanför tumören. I de regionala lymfkörtlarna från djur med MLL-tumörer visade genuttrycket tecken på försämrad antigenpresentation, samt immunhämning och/eller induktion av immuntolerans. Immuntolerans innebär att immuncellen inte längre reagerar mot det specifika antigen den blivit tolerant emot. Detta är vanligt förekommande hos individer med cancer och är ett sätt för tumören att undkomma immunförsvaret. I vävnadsprover av lymfkörtlarna kunde vi se färre antigenpresenterande celler, och liksom i tumörerna fanns det färre T-celler i MLL-modellen, något vi kunde se redan när tumörerna var väldigt små. CD169 är ett protein som bl.a. uttrycks av sinus-makrofager i lymfkörtlar. Dessa makrofager har en central funktion i att aktivera ett tumör-specifikt immunsvar. I råttmodellen kunde vi se att regionala lymfkörtlar från djur med MLL-tumörer hade lägre nivåer av CD169 än regionala lymfkörtlar från djur med AT1-tumörer, och då antalet sinus-makrofager visat sig ha prognostiskt värde i t.ex. tjocktarmscancer, ville vi se om det kunde vara så även i prostatacancer. Därför kvantifierade vi uttrycket av CD169 i metastasfria regionala lymfkörtlar från prostatacancerpatienter och såg att låga nivåer av CD169 medförde en ökad risk för att dö i prostatacancer. Sammantaget tyder resultaten på att MLL-tumören jämfört med AT1- tumören bättre lyckas förbereda omgivande vävnad för att gynna tumörväxt och spridning, både lokalt i prostatan men också längre bort från tumören i de regionala lymfkörtlarna. Våra fynd stämmer väl överens med aktuell tumörbiologisk forskning om hur tumörer påverkar sin omgivning. Något som inte visats tidigare är att miljön utanför tumören verkar skilja sig drastiskt beroende på tumörens metastaserande förmåga, samt att dessa skillnader går att se relativt tidigt under sjukdomsförloppet och förmodligen även långt bort från tumören. Vi har också visat att särskilt aggressiv prostatacancer verkar inducera en pre-metastatisk nisch i tumördränerande lymfkörtlar likt det som beskrivits i andra modellsystem och i andra cancertyper, men hittills inte i prostatacancer. Fler studier behövs för att bättre karaktärisera de förändringar som en potentiellt dödlig prostatacancer orsakar i andra vävnader, och för att ta reda på hur denna kunskap kan användas för att förbättra diagnostik och behandling.
|
Page generated in 0.075 seconds