Spelling suggestions: "subject:"notched"" "subject:"notches""
1 |
Dérégulation de MYC dans les Leucémies Aiguës Lymphoblastiques TBonnet, Mélanie 28 October 2011 (has links)
La leucémie aiguë lymphoblastique (LAL-T) est une hémopathie maligne qui représente 10 à 15% des LAL pédiatriques et 25% des LAL de l’adulte. Bien que la prise en charge et le pronostic (rémission dans 80-85% des cas) des LAL se soient améliorés au cours des 10 dernières années en partie dû à une meilleure stratification thérapeutique de ces entités malignes, le tableau clinique et le devenir des patients atteints de LAL-T restent péjoratif avec environ 30% de rechute dans les 2 années qui suivent le diagnostic. Au cours de ces dernières années, des sous-types spécifiques de LAL-T associés à une valeur pronostique ont été décrits et des thérapies ciblées devraient pouvoir être proposées à l’avenir. Dans ce contexte, mon travail de thèse a permis de définir et de mieux comprendre les différents niveaux de dérégulation de MYC dans les LAL-T à travers l’analyse moléculaire et biochimique de MYC et de ses principaux régulateurs sur une large cohorte protocolaire de LAL-T pédiatriques et adultes. Tout d’abord, nous montrons que l'expression de MYC est très variable et que des niveaux d'expression élevés sont observés dans de nombreux cas en absence de mutations NOTCH1/FBXW7. De plus, nos travaux mettent en évidence que la dérégulation post-traductionnelle de MYC, via l'axe PI3K/AKT à travers l'inactivation de PTEN, constitue une voie majeure d'activation de MYC dans les LAL-T. Ainsi, l'ensemble de ces résultats confirment la pertinence d’envisager des stratégies thérapeutiques ciblant MYC pour le traitement des LAL-T. Mon projet de thèse a également consisté en la génération d’un modèle murin original permettant de suivre les clones tumoraux surexprimant Myc depuis les étapes de développement (pré-)tumoral les plus précoces jusqu’aux étapes finales de progression maligne. / T-cell Acute Lymphoblastic Leukemia (T-ALL) are malignant proliferations of thymocytes, which represent 10-15% of pediatric and 25% of adult ALL. Despite indisputable therapeutic progress, T-ALLs remain of poor prognosis. Patients often present with a high tumor load accompanied by a rapid disease progression, and about 30% of cases relapse within the first 2 years following diagnosis. It is now clear that significant improvements in therapy will require a more accurate knowledge of the oncogenes involved, as well as their oncogenic role within complex functional networks. In this context, my PhD project was focused on the understanding of the regulation of MYC in T-ALL. We demonstrate that MYC expression is highly variable and that high MYC expression levels can be generated independently of NOTCH1 pathway. Furthermore, we show that posttranscriptional deregulation of MYC constitutes a major alternative pathway of MYC activation in T-ALL, operating partly via the PI3K/AKT axis through down regulation of PTEN. Altogether, our results lend further support to the significance of therapeutic targeting of MYC in T-ALL pathogenesis. The second part of my project was to generate an original transgenic mouse model designed to “track” inducible MYC+ clones from the earliest steps of (pre-)malignant development to the onset of leukemia.
|
2 |
The Identification of Notch1 Functional Domains Responsible for its Physical Interaction with PKCθRossiter, Wesley D 23 March 2016 (has links)
The adaptive immune system is a complex network of cells that protect the body from invasion by foreign pathogens. Crucial to the function of the adaptive immune system is the activation, proliferation and differentiation of T cells in response to foreign pathogen presentation by antigen presenting cells. T cell activation is driven through different signaling pathways that are dependent on phosphorylation of substrates by kinases. In the PLC pathway that activates the il2 gene program, Protein Kinase C-q (PKCq) and Notch1 localize to the immunological synapse and help drive the signaling cascade that leads to robust T cell activation. It has been previously shown that PKCq and Notch1, both interact with the CBM complex at the immunological synapse. Additionally, PKCq and Notch1 both have specific cytoplasmic and nuclear functions that help drive the il2 gene program. Here, we demonstrate the localization of PKCq and Notch1 constructs transfected into HEK 293 cells. The use of deletion constructs of Notch1 was intended to inform us of what functional domain of Notch1 was responsible for the interaction with PKCq, however no direct interaction was demonstrated with the PKCq and Notch1 constructs used in these experiments. We hypothesize that this is likely due to the inactive form of PKCq found in our construct, or a result of the cell type used in these experiments.
|
3 |
Biochemical and cellular characterization of the interplay between glutamine metabolism, mTOR and Notch1 signaling in cancer therapy / Caractérisation biochimique et cellulaire de l’interaction entre le métabolisme de la glutamine et la signalisation de mTOR et Notch1 comme thérapie contre le cancerNguyen, Tra ly 24 April 2018 (has links)
La tumorigenèse est un processus multi-étapes, constituée d'altérations génétiques qui conduisent à la transformation maligne des cellules humaines normales. Au cours de cette transformation maligne, l’activité de différentes voies oncogéniques est augmentée. Les voies de signalisation mTORC1 et Notch1 sont des voies oncogéniques bien connues qui jouent un rôle central dans la régulation de la croissance et du métabolisme cellulaires. Les traitements anti-mTORC1 et Notch1 sont approuvées en tant que thérapies anticancéreuses pour plusieurs types de tumeurs. Néanmoins, les cellules cancéreuses développent des résistances à ces inhibiteurs induisant un nombre important de rechute et donc d’échec de ces traitements. Ainsi, le but principal de ce travail est d'étudier l'inhibition des voies de signalisation mTORC1 et Notch1 dans les cellules cancéreuses afin de concevoir de nouvelles stratégies thérapeutiques anticancéreuses. En premier lieu, nous avons décrit une nouvelle classe d'inhibiteurs de mTORC1 qui présente une cytotoxicité spécifique vis-à-vis des cellules cancéreuses. Nous avons démontré que l’ICSN3250, un analogue de l'halituline marine cytotoxique, inhibe mTORC1 et induit la mort cellulaire. Le mécanisme moléculaire de cette inhibition est basé sur le déplacement de l'acide phosphatidique, un lipide activateur du complexe mTORC1, du domaine FRB de la protéine mTOR. Dans un deuxième temps, nous avons étudié le lien entre le métabolisme de la glutamine et la signalisation de Notch1 dans la leucémie lymphoblastique aiguë à lymphocytes T (T-ALL). Les changements métaboliques dans les cellules cancéreuses sont nécessaires à une prolifération cellulaire rapide et la croissance tumorale. Nous avons généré une lignée de cellule T-ALL dont la voie de signalisation Notch1 est constitutivement active et analysé les conséquences de cette activation sur le métabolisme de la glutamine. En effet, en absence de glutamine, l’activation de Notch1 induit la mort cellulaire par apoptose en perturbant l'accumulation de la glutamine synthétase, une enzyme qui permet la production de glutamine. Ce travail de thèse a donc permis de décrire de nouvelles stratégies pour cibler les voies mTORC1 et Notch1 dans le cancer. De futures investigations seront nécessaires pour étudier leur efficacité dans les thérapies anti-cancéreuses. / Tumorigenesis is a multistep process, consisting of genetic alterations that drive the malignant transformation of normal human cells. During this transformation, different oncogenic pathways are upregulated. mTORC1 and Notch1 signaling are well-known oncogenic pathways which play a central role in the regulation of cell growth and metabolism. Anti-mTORC1 and Notch1 therapies are approved as cancer treatments for several types of tumor but there are still developed resistances and relapse diseases. Thus, the main aim of this work is to study the inhibition of mTORC1 and Notch1 signaling pathway in cancer cells in order to design new therapeutic anti-cancer strategies. In the first place, we reported new class of mTORC1 inhibitors which has cytotoxicity specifically towards cancer cells. We demonstrated that ICSN3250, an analogue of the cytotoxic marine alkaloid halitulin, inhibited mTORC1 and induced cell death. The molecular mechanism of this inhibition is based on the displacement of the lipid phosphatidic acid, an activator of mTORC1 complex, from the FRB domain of mTOR protein. At the second stage, we have studied the connection between glutamine metabolism and Notch1 signaling in T-cell acute lymphoblastic leukemia (TALL). Metabolic changes in cancer cells are advantageous for rapid cell proliferation and tumor growth. We have generated Notch1-driven T-ALL cells and analyzed the consequences of Notch1 activation on glutamine metabolism. Indeed, under glutamine withdrawal, Notch1 upregulation induced apoptotic cell death by disrupting the accumulation of glutamine synthetase, a glutamine producing-enzyme. Overall, this thesis work allowed to describe new strategies to target mTORC1 and Notch1 pathways in cancer, which need future investigations to study their efficacy in therapies.
|
4 |
Caractérisation du potentiel régulateur du facteur de transcription ZNF143 / Characterization of the regulatory potential of the transcription factor ZNF143Ngondo, Richard Patryk 24 September 2013 (has links)
Des données suggéraient que le facteur de transcription ZNF143 régule l’expression de milliers de gènes mais très peu d’informations étaient disponibles sur les gènes cibles, réseaux de gènes, processus biologiques et mécanismes impliquant ZNF143. Pour mon travail de thèse je me suis intéressé au potentiel régulateur de ce facteur en particulier chez l’homme. Mon projet de recherche a premièrement consisté à identifier toutes les cibles génomiques de ZFN143 puis à caractériser fonctionnellement cet interactome. Les résultats obtenus ont permis d’identifier plus de 3000 gènes cibles de ZNF143, principalement impliqués dans des processus liés à la croissance cellulaire. Mes travaux ont aussi permis de mettre à jour de nouveaux mécanismes de régulation impliquant ce facteur. En effet, nous avons démontré que les facteurs de transcription ZNF143, THAP11 et Notch1 modulent l’expression d’un répertoire commun de gènes via des sites de liaison à l’ADN chevauchant. Nous avons aussi montré que ZNF143 joue un rôle essentiel dans l’expression des gènes dirigés par des promoteurs bidirectionnels et qu’il est aussi impliqué dans une boucle d’autorégulation transcriptionnelle de son expression. / Numerous data were suggesting that the transcription factor ZNF143 regulates the expression of thousand of genes. However, nothing was known about the genome wide regulatory networks, biological processes and transcriptional mechanisms involving this factor.For my PhD thesis I was interested in exploring the regulatory potential of the ZNF143 transcription factor in human. The goal of my project was to identify all the genomic targets of this factor and functionally characterize this ZNF143-DNA interactome. The results I obtained allowed us to identify more than 3000 genes targeted by ZNF143, mainly involved in biological processes linked to cell proliferation. My work also led us to discover new transcriptional mechanisms involving ZNF143. We demonstrated that the transcription factors ZNF143, THAP11 and Notch1 modulate the expression of a common set f gene via overlapping DNA binding sites. Moreover, we also showed that ZNF143 in essential for the divergent expression of genes from bidirectional promoters and that its expression is regulated through auto-regulatory feedback loop.
|
5 |
JNK2 inhibits luminal cell commitment in normal mammary glands and tumorsCantrell, Michael Andrew 12 August 2015 (has links)
Breast cancer is a heterogeneous disease with vastly different tumor progression kinetics and survival outcomes depending upon the differentiation state and gene expression patterns of the tumor. Effective treatments exist for patients with endocrine therapy sensitive or HER2 overexpressing tumors, but targeted treatments are not available for other tumor types. The mechanisms governing mammary tumor phenotype generation could prove critical to finding treatments. The c-Jun N-terminal kinase (JNK) pathway has recently been implicated in the inhibition of breast tumor luminal differentiation (1, 2) and JNK2, in particular, is important in mammary tumorigenesis and tumor progression (3-8). Therefore, the involvement of JNK2 in inhibition of mammary luminal cell differentiation was investigated in normal glands and tumors. Studies found that JNK2 inhibits luminal cell populations in normal mammary ducts. Additionally, JNK2 suppresses Notch activity in stem cell niche of the developing mammary gland. In vitro assays show that control over differentiation by JNK2 is due to suppression of p53-dependent Notch1 expression. Inhibition of luminal cell populations by JNK2 is also apparent in tumor cell models regardless of p53 expression. In the p53-competent Polyoma Middle T-antigen model, Notch1 expression is suppressed by JNK2. In the absence of p53, JNK2 suppresses luminal populations independent of Notch1. In this model, decreased luminal marker expression is accompanied by increased epithelial to mesenchymal transition. It was also found that JNK2-dependent epithelial to mesenchymal transition inhibits luminal populations and is driven by JNK2-dependent suppression of Brca1. JNK2 also confers resistance to estrogen signaling inhibition, and increases the metastatic ability of tumor cells in vivo. These data establish the importance of JNK2 in mammary epithelial cell differentiation in normal glands and tumors. They also suggest that JNK2 may be an effective prognostic marker or treatment target. / text
|
6 |
KLF4 regulates notch1 expression and signaling during epithelial transformationLiu, Zhaoli. January 2006 (has links) (PDF)
Thesis (Ph. D.)--University of Alabama at Birmingham, 2006. / Title from first page of PDF file (viewed Feb. 18, 2009). Includes bibliographical references.
|
7 |
Role of Notch1 in Cardiac Cell Differentiation and Migration: A DissertationChau, Dinh Le Mary 06 August 2007 (has links)
The cardiac conduction system is responsible for maintaining and orchestrating the rhythmic contractions of the heart. Results from lineage tracing studies indicate that precursor cells in the ventricles give rise to both cardiac muscle and conduction cells. Using chick embryonic hearts, we have found that Notch signaling plays an important role in the differentiation of cardiac muscle and conduction cell lineages in the ventricles. Notch1 expression coincides with a conduction marker at early stages of conduction system development. Mis-expression of constitutively active Notch1 (NIC) in early heart tubes exhibited multiple effects on cardiac cell differentiation. Cells expressing NIC had a significant decrease in the expression of cardiac muscle markers, but an increase in the expression of conduction cell markers. Loss-of-function studies further support that Notch1 signaling is important for the differentiation of these cardiac cell types. Functional electrophysiology studies show that the expression of constitutively active Notch1 resulted in abnormalities in ventricular conduction pathway patterns.
During cardiogenesis, groups of myocardial cells become separated from each other, and migrate to form the trabeculae. These finger-like projections found within the ventricular chamber coalesce to generate the muscular portions of the interventricular septum, the thickened myocardium, and future sites of the conduction system. We have found that Notch signaling regulates the migration of cardiac cells during cardiogenesis. Over-expression of constitutively active Notch causes cells to localize more centrally within the heart, while loss-of-Notch function results in cells distributed within the periphery of the heart. Staining of heart sections shows that Notch signaling regulates the expression of N-cadherin, the predominant adhesion molecule in cardiomyocytes. We find that the effects of Notch on cell migration are two-fold: delamination and cell motility. Time-lapse studies demonstrate that Notch signaling increases cell motility, but does not affect speed or directionality of migration. Furthermore, we find that the effects of Notch on cell migration is independent of its effects on differentiation.
|
8 |
Pharmacologic Treatment of Ascending Aortic Aneurysms in Notch1+/- MiceMagnuson, Cody A. 27 August 2019 (has links)
No description available.
|
9 |
The Role of NOTCH1 in Lung CancerSinicropi-Yao, Sara Lu-Ming 27 July 2018 (has links)
No description available.
|
10 |
Notch 1 Mediated Inhibition of Nur77-induced apoptosis: Implications for T-cell LeukemiaRud, Jonathan George 01 May 2010 (has links)
It is widely accepted that activating mutations of genes encoding the Notch family of transmembrane receptors, specifically Notch1, are associated with oncogenic transformation. Previous data from our lab has shown that an active form of Notch1 (NICD) provides protection against apoptosis in D011.10 T cells; and that this effect may be attributed to NICD binding the pro-apoptotic protein Nur77. Nur77 is an immediate early gene that is upregulated during both negative selection of thymocytes and activation-induced apoptosis in D011.10 T cells. Nur77 upregulation is tightly regulated and requires MEF2D, NFAT, and the transcriptional co-activator, p300, to effectively respond to apoptotic stimuli. Here, we show that NICD has the ability to interfere with the transcription of Nur77, and that this interference is directly related to the inability of p300 to bind the Nur77 promoter in the presence of NICD. We also show that blocking Notch activation, through inhibition of gamma secretase or shRNA directed against Notch1, in T cell acute lymphoblastic leukemia (T-ALL) cell lines restores Nur77 expression in response to apoptotic stimuli. These observations support a mechanism by which NICD over-expression can suppress the activation of a known pro-apoptotic molecule, and further suggests this mechanism may operate in T-ALL.
|
Page generated in 0.0469 seconds