1 |
The Identification of novel genes differentially expressed in Haemopoietic progenitor cells.Gregorio-King, Claudia C, mikewood@deakin.edu.au January 2001 (has links)
The biochemical and molecular processes that maintain the stem cell pool, and govern the proliferation and differentiation of haemopoietic stem/progenitor cells (HSPCs) have been widely investigated but are incompletely understood. The purpose of this study was to identify and characterise novel genes that may play a part in regulating the mechanisms that control the proliferation, differentiation and self-renewal of human HSPCs.
Reverse transcription differential display polymerase chain reaction (dd-PCR) was used to identify differences in gene expression between a HSPC population defined by expression of the CD34 phenotype, and the more mature CD34 depleted populations. A total of 6 differentially expressed complementary deoxyribonucleic acid (cDNA) sequences were identified. Four of these transcripts were homologous to well characterised genes, while two (band 1 and band 20) were homologous to unknown and uncharacterised partial gene sequences on the GenBank database and were thus chosen for further investigation.
The partial cDNA sequences for band 1 and band 20 were designated ORP-3 and MERP-1 (respectively) due to homologies with other well-characterised gene families. Differential expression of the ORP-3 and MERP-1 genes was confirmed using Taqman™ real-time polymerase chain reaction (PCR) with 3 - 4-fold and 4-10 -fold higher levels in the CD34+ fractions of haemopoietic cells compared to CD34- populations respectively. Additionally, expression of both these genes was down regulated with proliferation and differentiation of CD34+ cells further confirming higher expression in a less differentiated subset of haemopoietic cells.
The full coding sequences of ORP-3 and MERP-1 were elucidated using bioinformatics, rapid amplification of cDNA ends (RACE) and PCR amplification. The MERP-1 cDNA is 2600 nucleotides (nt) long, and localizes by bioinformatics to chromosome 7.. It consists of three exons and 2 introns spanning an entire length of 31.4 kilobases (kb). The MERP-1 open reading frame (ORF) codes for a putative 344 amino acid (aa) type II transmembrane protein with an extracellular C-terminal ependymin like-domain and an intracellular N-terminal sequence with significant homology to the cytoplasmic domains of members of the protocadherin family of transmembrane glycoproteins. Ependymins and protocadherins are well-characterised calcium-dependant cell adhesion glycoproteins. Although the function of MERP-1 remains to be elucidated, it is possible that MERP-1 like its homologues plays a role in calcium dependent cell adhesion. Differential expression of the MERP-1 gene in haemopoietic cells suggests a role in haemopoietic stem cell proliferation and differentiation, however, its broad tissue distribution implies that it may also play a role in many cell types. Characterization of the MERP-1 protein is required to elucidate these possible roles.
The ORP-3 cDNA is 6631nt long, and localizes by bioinformatics to chromosome 7pl5-p21. It consists of 23 exons and 22 introns spanning an entire length of 183.5kb. The ORP-3 ORF codes for a putative 887aa protein which displays the consensus sequence for a highly conserved oxysterol-binding domain. Other well-characterised proteins expressing these domains have been demonstrated to bind oxysterols (OS) in a dose dependant fashion. OS are hydroxylated derivatives of cholesterol Their biological activities include inhibition of cholesterol biosynthesis and cell proliferation in a variety of cell types, including haemopoietic cells. Differential expression of the ORP-3 gene in haemopoietic cells suggests a possible role in the transduction of OS effects on haemopoietic cells, however, its broad tissue distribution implies that it may also play a role in many cell types.
Further investigation of ORP-3 gene expression demonstrates a significant correlation with CD34+ sample purity, and 2-fold higher expression in a population of haemopoietic cells defined by the CD34+38- phenotype compared to more mature CD34+38+ cells. This finding, taken together with the previous observation of down-regulation of ORP-3 expression with proliferation and differentiation of CD34+ cells, indicates that ORP-3 expression may be higher in a less differentiated subset of cells with a higher proliferative capacity. This hypothesis is supported by the observation that expression of the ORP-3 gene is approximately 2-fold lower in differentiated HL60 promyelocytic cells compared to control, undifferentiated cells.
ORP-3 expression in HL60 cells during normal culture conditions was also found to vary with expression positively correlated with cell number. This indicates a possible cell cycle effect on ORP-3 gene expression with levels highest when cell density, and therefore the percentage of cells in G(0)/G(1) phase of the cell cycle is highest. This observation also correlates with the observation of higher ORP-3 expression in CD34+38-cells, and in CD34+ and HL60 cells undergoing OS induced and camptothecin induced apoptosis that is preceded by cell cycle arrest at G(0)/G(1). Expression of the ORP-3 gene in CD34+ HSPCs from UCB was significantly decreased to approximately half the levels observed in control cells after 24 hours incubation in transforming growth factor beta-1 (TGFâl). As ≥90% of these cells are stimulated into cell cycle entry by TGFâl, this observation further supports the hypothesis that ORP-3 expression is highest when cells reside in the G(0)/G(1) phase of the cell cycle. Data obtained from investigation of ORP-3 gene expression in synchronised HL60 cells however does not support nor disprove this hypothesis.
Culture of CD34+ enriched HSPCs and HL60 cells with 25-OHC significantly increased ORP-3 gene expression to approximately 1.5 times control levels. However, as 25-OHC treatment also increased the percentage of apoptotic cells in these experiments, it is not valid to make any conclusions regarding the regulation of ORP-3 gene expression by OS. Indeed, the observation that camptothecin induced apoptosis also increased ORP-3 gene expression in HL60 cells raises the possibility that up-regulation of ORP-3 gene expression is also associated with apoptosis,
Taken together, expression of the ORP-3 gene appears to be regulated by differentiation and apoptosis of haemopoietic progenitors, and may also be positively associated with proliferative and G(0)/G(1) cell cycle status indicating a possible role in all of these processes.
Given the important regulatory role of apoptosis in haemopoiesis and differential expression of the ORP-3 gene in haemopoietic progenitors, final investigations were conducted to examine the effects OS on human HSPCs. Granulocyte/macrophage colony forming units (CFU-GM) generated from human bone marrow (ABM) and umbilical cord blood (UCB) were grown in the presence of varying concentrations of three different OS - 7keto-cholesterol (7K-C), 7beta-hydroxycholesterol (7p-OHC) and 25-hydroxycholesterol (25-OHC). Similarly, the effect of OS on HL60 and CD34+ cells was investigated using annexin-V staining and flow cytometry to measure apoptosis. Reduction of nitroblue tetrazolium (NBT) was used to assess differentiative status of HL60 cells. CFU-GM from ABM and HL60 growth was inhibited by all three OS tested, with 25-OHC being the most potent. 25-OHC inhibited ≥50% of bone marrow CFU-GM and ≥95% of HL60 cell growth at a level of 1 ug/ml. Compared to UCB, CFU-GM derived from ABM were more sensitive to the effects of all OS tested. Only 25-OHC and 7(5-OHC significantly inhibited growth of UCB derived CFU-GM. OS treatment increased the number of annexin-V CD34+ cells and NBT positive HL60 cells indicating that OS inhibition of CFU-GM and HL60 cell growth can be attributed to induction of apoptosis and differentiation.
From these studies, it can be concluded that dd-PCR is an excellent tool for the discovery of novel genes expressed in human HSPCs. Characterisation of the proteins encoded by the novel genes ORP-3 and MERP-1 may reveal a regulatory role for these genes in haemopoiesis. Finally, investigations into the effects of OS on haemopoietic progenitor cells has revealed that OS are a new class of inhibitors of HSPC proliferation of potential relevance in vivo and in vitro.
|
2 |
Genome Studies of Gene Expression and Alternative Splicing During iPSC Skeletal Muscle Induction and DifferentiationWu, Yibo 31 May 2019 (has links)
Facioscapulohumeral muscular dystrophy(FSHD) is a disorder characterized by muscle weakness and wasting (atrophy). This disease is typically inherited as autosomal dominant and has a complex genetic and epigenetic etiology. Our collaborator had differentiated healthy human pluripotent stem cells(iPSC) into skeletal muscles and exploited ISO-Seq to explore cell gene expression and transcript alternative splicing usage profile during 8 differentiation stages. Later, stage specific gene differential expression, transcript alternative splicing, gene ontology and novel gene/transcript were analysed to characterize the feature of each stage during the differentiation. In terms of expressed genes with more than or equal to 5 transcripts, each stage had shown their own stage specific features. About transcripts, iPS, S1, ADM.D0, ADM.D4 have about 30% to 40% more total transcripts than the rest 4 stages. 4 kinds of alternative splicing events are generally distributed and S2 stage has the least alternative splicing events potentially due to technical reasons. As for gene differential expressions, ADM.D4 has considerable amount of differential expressed genes with 5 other stages and it has minor difference with ISM.D4 and S3 stages(they are all myotubes cells). The gene ontology analysis is performed according to the results of previous step, stage specific GO terms are revealed.
|
3 |
Genome Studies of Gene Expression and Alternative Splicing During iPSC Skeletal Muscle Induction and DifferentiationWu, Yibo 31 May 2019 (has links)
Facioscapulohumeral muscular dystrophy(FSHD) is a disorder characterized by muscle weakness and wasting (atrophy). This disease is typically inherited as autosomal dominant and has a complex genetic and epigenetic etiology. Our collaborator had differentiated healthy human pluripotent stem cells(iPSC) into skeletal muscles and exploited ISO-Seq to explore cell gene expression and transcript alternative splicing usage profile during 8 differentiation stages. Later, stage specific gene differential expression, transcript alternative splicing, gene ontology and novel gene/transcript were analysed to characterize the feature of each stage during the differentiation. In terms of expressed genes with more than or equal to 5 transcripts, each stage had shown their own stage specific features. About transcripts, iPS, S1, ADM.D0, ADM.D4 have about 30% to 40% more total transcripts than the rest 4 stages. 4 kinds of alternative splicing events are generally distributed and S2 stage has the least alternative splicing events potentially due to technical reasons. As for gene differential expressions, ADM.D4 has considerable amount of differential expressed genes with 5 other stages and it has minor difference with ISM.D4 and S3 stages(they are all myotubes cells). The gene ontology analysis is performed according to the results of previous step, stage specific GO terms are revealed.
|
4 |
Identification and Functional Characterization of Novel Genes Involved in Primary Neurogenesis in Xenopus laevis / Characterization of Novel Genes Involved in Neurogenesis in XenopusSouopgui, Jacob 20 June 2002 (has links)
No description available.
|
5 |
Identification and Characterization of Deafness Genes in Drosophila melanogaster / Identifizierung und Charakterizierung von Taubheitsgene in Drosophila melanogasterSenthilan, Pingkalai 25 January 2011 (has links)
No description available.
|
Page generated in 0.0487 seconds