• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Contributions à l'étude de la classification spectrale et applications

Mouysset, Sandrine 07 December 2010 (has links) (PDF)
La classification spectrale consiste à créer, à partir des éléments spectraux d'une matrice d'affinité gaussienne, un espace de dimension réduite dans lequel les données sont regroupées en classes. Cette méthode non supervisée est principalement basée sur la mesure d'affinité gaussienne, son paramètre et ses éléments spectraux. Cependant, les questions sur la séparabilité des classes dans l'espace de projection spectral et sur le choix du paramètre restent ouvertes. Dans un premier temps, le rôle du paramètre de l'affinité gaussienne sera étudié à travers des mesures de qualités et deux heuristiques pour le choix de ce paramètre seront proposées puis testées. Ensuite, le fonctionnement même de la méthode est étudié à travers les éléments spectraux de la matrice d'affinité gaussienne. En interprétant cette matrice comme la discrétisation du noyau de la chaleur définie sur l'espace entier et en utilisant les éléments finis, les vecteurs propres de la matrice affinité sont la représentation asymptotique de fonctions dont le support est inclus dans une seule composante connexe. Ces résultats permettent de définir des propriétés de classification et des conditions sur le paramètre gaussien. A partir de ces éléments théoriques, deux stratégies de parallélisation par décomposition en sous-domaines sont formulées et testées sur des exemples géométriques et de traitement d'images. Enfin dans le cadre non supervisé, le classification spectrale est appliquée, d'une part, dans le domaine de la génomique pour déterminer différents profils d'expression de gènes d'une légumineuse et, d'autre part dans le domaine de l'imagerie fonctionnelle TEP, pour segmenter des régions du cerveau présentant les mêmes courbes d'activités temporelles.
2

Contributions à l'étude de la classification spectrale et applications / Contributions to the study of spectral clustering and applications

Mouysset, Sandrine 07 December 2010 (has links)
La classification spectrale consiste à créer, à partir des éléments spectraux d'une matrice d'affinité gaussienne, un espace de dimension réduite dans lequel les données sont regroupées en classes. Cette méthode non supervisée est principalement basée sur la mesure d'affinité gaussienne, son paramètre et ses éléments spectraux. Cependant, les questions sur la séparabilité des classes dans l'espace de projection spectral et sur le choix du paramètre restent ouvertes. Dans un premier temps, le rôle du paramètre de l'affinité gaussienne sera étudié à travers des mesures de qualités et deux heuristiques pour le choix de ce paramètre seront proposées puis testées. Ensuite, le fonctionnement même de la méthode est étudié à travers les éléments spectraux de la matrice d'affinité gaussienne. En interprétant cette matrice comme la discrétisation du noyau de la chaleur définie sur l'espace entier et en utilisant les éléments finis, les vecteurs propres de la matrice affinité sont la représentation asymptotique de fonctions dont le support est inclus dans une seule composante connexe. Ces résultats permettent de définir des propriétés de classification et des conditions sur le paramètre gaussien. A partir de ces éléments théoriques, deux stratégies de parallélisation par décomposition en sous-domaines sont formulées et testées sur des exemples géométriques et de traitement d'images. Enfin dans le cadre non supervisé, le classification spectrale est appliquée, d'une part, dans le domaine de la génomique pour déterminer différents profils d'expression de gènes d'une légumineuse et, d'autre part dans le domaine de l'imagerie fonctionnelle TEP, pour segmenter des régions du cerveau présentant les mêmes courbes d'activités temporelles. / The Spectral Clustering consists in creating, from the spectral elements of a Gaussian affinity matrix, a low-dimension space in which data are grouped into clusters. This unsupervised method is mainly based on Gaussian affinity measure, its parameter and its spectral elements. However, questions about the separability of clusters in the projection space and the spectral parameter choices remain open. First, the rule of the parameter of Gaussian affinity will be investigated through quality measures and two heuristics for choosing this setting will be proposed and tested. Then, the method is studied through the spectral element of the Gaussian affinity matrix. By interpreting this matrix as the discretization of the heat kernel defined on the whole space and using finite elements, the eigenvectors of the affinity matrix are asymptotic representation of functions whose support is included in one connected component. These results help define the properties of clustering and conditions on the Gaussian parameter. From these theoretical elements, two parallelization strategies by decomposition into sub-domains are formulated and tested on geometrical examples and images. Finally, as unsupervised applications, the spectral clustering is applied, first in the field of genomics to identify different gene expression profiles of a legume and the other in the imaging field functional PET, to segment the brain regions with similar time-activity curves.
3

Kernel LMS à noyau gaussien : conception, analyse et applications à divers contextes / Gaussian kernel least-mean-square : design, analysis and applications

Gao, Wei 09 December 2015 (has links)
L’objectif principal de cette thèse est de décliner et d’analyser l’algorithme kernel-LMS à noyau Gaussien dans trois cadres différents: celui des noyaux uniques et multiples, à valeurs réelles et à valeurs complexes, dans un contexte d’apprentissage distributé et coopératif dans les réseaux de capteurs. Plus précisement, ce travail s’intéresse à l’analyse du comportement en moyenne et en erreur quadratique de cas différents types d’algorithmes LMS à noyau. Les modèles analytiques de convergence obtenus sont validés par des simulations numérique. Tout d’abord, nous introduisons l’algorithme LMS, les espaces de Hilbert à noyau reproduisants, ainsi que les algorithmes de filtrage adaptatif à noyau existants. Puis, nous étudions analytiquement le comportement de l’algorithme LMS à noyau Gaussien dans le cas où les statistiques des éléments du dictionnaire ne répondent que partiellement aux statistiques des données d’entrée. Nous introduisons ensuite un algorithme LMS modifié à noyau basé sur une approche proximale. La stabilité de l’algorithme est également discutée. Ensuite, nous introduisons deux types d’algorithmes LMS à noyaux multiples. Nous nous concentrons en particulier sur l’analyse de convergence de l’un d’eux. Plus généralement, les caractéristiques des deux algorithmes LMS à noyaux multiples sont analysées théoriquement et confirmées par les simulations. L’algorithme LMS à noyau complexe augmenté est présenté et ses performances analysées. Enfin, nous proposons des stratégies de diffusion fonctionnelles dans les espaces de Hilbert à noyau reproduisant. La stabilité́ de cas de l’algorithme est étudiée. / The main objective of this thesis is to derive and analyze the Gaussian kernel least-mean-square (LMS) algorithm within three frameworks involving single and multiple kernels, real-valued and complex-valued, non-cooperative and cooperative distributed learning over networks. This work focuses on the stochastic behavior analysis of these kernel LMS algorithms in the mean and mean-square error sense. All the analyses are validated by numerical simulations. First, we review the basic LMS algorithm, reproducing kernel Hilbert space (RKHS), framework and state-of-the-art kernel adaptive filtering algorithms. Then, we study the convergence behavior of the Gaussian kernel LMS in the case where the statistics of the elements of the so-called dictionary only partially match the statistics of the input data. We introduced a modified kernel LMS algorithm based on forward-backward splitting to deal with $\ell_1$-norm regularization. The stability of the proposed algorithm is then discussed. After a review of two families of multikernel LMS algorithms, we focus on the convergence behavior of the multiple-input multikernel LMS algorithm. More generally, the characteristics of multikernel LMS algorithms are analyzed theoretically and confirmed by simulation results. Next, the augmented complex kernel LMS algorithm is introduced based on the framework of complex multikernel adaptive filtering. Then, we analyze the convergence behavior of algorithm in the mean-square error sense. Finally, in order to cope with the distributed estimation problems over networks, we derive functional diffusion strategies in RKHS. The stability of the algorithm in the mean sense is analyzed.

Page generated in 0.0524 seconds