• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 2
  • 1
  • 1
  • Tagged with
  • 24
  • 24
  • 13
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

An investigation of the barriers to non-viral gene delivery

Milroy, David Alan January 1999 (has links)
No description available.
2

Characterization of two nima interacting proteins suggests a link between nima and nuclear membrane fission

Davies, Jonathan Robert 05 August 2004 (has links)
No description available.
3

Proteomic Analysis of the Nuclear Membranes of Human Periodontal Ligament Fibroblast and Gingival Fibroblast Cell Types: A Comparison Study

Kelsey, William Patrick, V 03 September 2009 (has links)
No description available.
4

Determining features sufficient for protein trafficking to the plant inner nuclear membrane and identification of putative nuclear envelope-associated proteins in <i>Arabidopsis thaliana</i>.

Groves, Norman R. 25 October 2019 (has links)
No description available.
5

Protein Quality Control at the Inner Nuclear Membrane – The Asi complex in Saccharomyces cerevisiae

Pantazopoulou, Marina January 2016 (has links)
The nuclear envelope is a barrier comprised of outer and inner membranes that separate the cytoplasm from the nucleoplasm. The outer (ONM) and inner (INM) membranes have different physical characteristics and protein compositions. In contrast to the extensive data available on the protein quality control processes operating in the cytoplasm, endoplasmic reticulum and the nucleoplasm, the mechanisms controlling protein turnover at the INM are poorly documented. The work presented in this thesis focuses on Asi1, Asi2 and Asi3, three bona-fide integral INM proteins of the yeast Saccharomyces cerevisiae. By contrast to mammalian cells, yeast progress through the cell cycle with a closed mitosis, that is cells divide in the absence of the cyclical fragmentation/reassembly of the nuclear membrane. Consequently, examining the processes affecting the stability of the Asi proteins in yeast may provide useful paradigms for understanding the turnover of INM components in non-dividing, terminally differentiated and post-mitotic cells of metazoan origin.The results have contributed to the elucidation of the biological function of Asi1 and Asi3, which are homologous proteins with C-terminal RING domains. Asi1 and Asi3 function together as a dimeric E3 ubiquitin ligase complex that operates with ubiquitin conjugating enzymes Ubc6 and Ubc7. The Asi1/3 complex ubiquitylates transcription factors Stp1 and Stp2 when they gain inappropriate access to the nucleus in the absence of SPS-sensor activation. Intriguingly, the Asi1/3 complex also mediates the turnover of multiple membrane proteins that primarily localize to other cell membranes. This latter finding indicates that the barrier function of nuclear pore complexes is not as tight as previously thought. Consistently, asi1 null mutations are synthetic lethal when introduced into hrd1Δ ire2Δ cells with compromised ER-associated degradation (ERAD) and unfolded protein response (UPR) pathways. Together the results define Asi1/3 as components of a novel quality control pathway operating in association with the INM that acts to safeguard the identity and maintain the function of the nuclear compartment. Asi1 and Asi2 exhibit rapid turnover and their turnover is ubiquitin-dependent, exhibiting a clear requirement for Ubc7. The ubiquitylated forms of Asi1 and Asi2 are degraded by nuclear-localized proteasomes; the ubiquitylated forms exhibit enhanced stability in sts1-2 mutants. Asi1 turnover requires Cue1, the AAA ATPase Cdc48 and co-factor Ubx1. Asi1 turnover occurs unimpeded in cells lacking a functional Asi1/3 complex and in cells lacking Doa10, an E3 ligase complex also known to function at the INM. Consequently, Asi1 is subject to a quality control pathway associated with INM but that is distinct from the Asi1/3 and Doa10 INM- associated degradative (INMAD) pathways. This thesis documents work that clearly demonstrates that the INM is a highly dynamic structure that possesses multiple and active quality control pathways. / <p>At the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 3: Manuscript.</p>
6

Transport of Tail-anchored Proteins to the Inner Nuclear Membrane

Pfaff, Janine 09 November 2016 (has links)
No description available.
7

Trafficking of integral membrane proteins of the inner nuclear membrane can be mediated by the ''sorting motif'' of autographa californica nucleopolyhedrovirus odv-e66

Williamson, Shawn T 30 October 2006 (has links)
The amino-terminal 33 amino acids of the baculovirus integral membrane protein, ODV-E66, are sufficient for localization of fusion proteins to viralinduced intranuclear microvesicles (MV) and occlusion derived virus envelopes during infection, and has been termed the sorting motif (SM). When abundantly expressed, SM-fusions are also detected in the inner nuclear membrane (INM), outer nuclear membrane and endoplasmic reticulum of infected cells, suggesting proteins with the SM use the same trafficking pathway as cellular INM proteins to traffic to nuclear membranes. This study identifies the essential characteristics required for sorting of the SM to the INM of uninfected cells, and the MV and ODV envelopes of infected cells. These features are an 18 amino acid transmembrane sequence that lacks polar and charged amino acids (a.a.) with a cluster of charged a.a. spaced 5-11 residues from the end of the transmembrane sequence. A comparison of the a.a. sequence of these SM features with cellular INM proteins shows the features are conserved. The model of INM protein sorting and localization predicts the only known sorting event during INM protein trafficking is immobilization/retention in the INM. This study uses confocal microscopy and fluorescence recovery after photobleaching to compare the localization and mobility of lamin B receptor (LBR) fusions (which contain SM-like sequences) to a viral SM fusion when expressed in either mammalian or insect cells. The results show that immobilization is not necessarily required for accumulation of proteins in the INM. Furthermore, the results from infected cells show that an active sorting event, likely independent of immobilization, can distinguish the viral SM from cellular sequences similar to the SM. The results of this study show that sorting of proteins to the INM can be mediated by the viral SM or INM protein SM-like sequences that can function either independent of, or in addition to, immobilization. These data combined with recent reports suggest that in addition to diffusion:retention a signal mediated mechanism for sorting and localization to the INM can occur.
8

Role a regulace jaderné membrány během meiotického zrání savčího oocytu / Role and regulation of nuclear membrane during meiotic maturation of mammalian oocyte

Končická, Markéta January 2019 (has links)
Meiotic division of a female germ cell, an oocyte, is more prone to segregation errors and consequently to aneuploidies than meiosis of a sperm. Aneuploidies and chromosomal aberrations in oocytes increase with higher maternal age in humans and also in mice. Meiotic maturation onset is connected with activity of cyclin dependent kinase 1 (CDK1) that leads to dissociation of nuclear membrane. Moreover regulation of translation of key transcripts is necessary for proper meiotic progression. In thesis findings from four scientific publications are interpreted. We have analyzed the timing of nuclear envelope breakdown (NEBD) and polar body extrusion in mouse oocytes originating from two distinct female age groups: young (2 months old) and aged (12 months old). We found that meiotic maturation happens faster in aged females' oocytes due to early phosphorylation of Lamin A/C, a component of nuclear lamina, and rapid dissociation of nuclear membrane. Moreover aged females' oocytes presented unique characteristic invaginations of nuclear membrane and thus significantly increased circumference of the nuclear envelope compared to the oocytes from young females. These data combined with increased activity of CDK1 and Cyclin B, as well as increased translation of factors that regulate the translation itself,...
9

Analysis of the Interactome and Membrane Insertion of VAPB, a Tail- Anchored Protein at the Inner Nuclear Membrane

James, Christina 09 June 2021 (has links)
No description available.
10

Analysis of Protein Transport to the Inner Nuclear Membrane

Blenski, Marina 25 June 2019 (has links)
No description available.

Page generated in 0.0697 seconds