221 |
Reações de eletrodesintegração nuclear produzida por pósitrons e elétrons / Nuclear reactions electrodesintegration produced by positrons and electronsNascimento, Ivan Cunha 30 August 1965 (has links)
Reações de eletrodesintegração nuclear produzida por pósitrons e elétrons / Nuclear reactions electrodesintegration produced by positrons and electrons
|
222 |
Reações de eletrodesintegração nuclear produzida por pósitrons e elétrons / Nuclear reactions electrodesintegration produced by positrons and electronsIvan Cunha Nascimento 30 August 1965 (has links)
Reações de eletrodesintegração nuclear produzida por pósitrons e elétrons / Nuclear reactions electrodesintegration produced by positrons and electrons
|
223 |
Um método para determinação experimental da densidade da matéria nuclear / A method for experimental determination of the density of nuclear matter.Alvarez, Marcos Aurelio Gonzalez 12 December 2002 (has links)
Neste trabalho foi proposto um método de deconvolução para extrair experimentalmente a densidade da matéria nuclear no estado fundamental a partir de dados de espalhamento elástico entre íons pesados em energias baixas (abaixo da barreira de fusão) e intermediárias. A consistência dos resultados foi totalmente verificada. O método se mostrou uma poderosa ferramenta para a determinação experimental da densidade da matéria de núcleos no estado fundamental, particularmente em uma região superficial, onde a diferença entre a densidade de núcleos exóticos e núcleos estáveis vizinhos é muito enfatizada. Foram realizadas medidas de seções de choque de espalhamento elástico para os sistemas 16O + 40Ca, 120Sn, com o objetivo de ajudar na construção de uma sistemática experimental para a parte real da interação nuclear, e para obter a densidade experimental da matéria nuclear no estado fundamental para o núcleo 16O. Como complemento, o trabalho apresenta: i-) uma sistemática teórica das densidades nucleares, realizada para toda região de massa da tabela periódica; ii-) o modelo não-local, desenvolvido para descrever a dependência com a energia da parte real da interação nuclear; e iii-) uma nova representação para a absorção de fluxo, devido aos canais de reação. Com isso, foi desenvolvida uma sistematização para o potencial ótico a partir de uma análise consistente de dados de espalhamento elástico de íons pesados em energias baixas e intermediárias. Esta análise resultou em uma previsão extremamente satisfatória para as seções de choque de espalhamento elástico experimentais, para um vasto conjunto de dados, utilizando um modelo bastante fundamental e global para o potencial ótico e, mais importante, sem a utilização de parâmetros livres. / An unfolding method is proposed to extract ground-state nuclear matter densities from heavy-ion elastic scattering data analyses at low (sub-barrier) and intermediate energies. The consistency of the results was fully checked. The method is a powerful tool to obtain ground-state nuclear matter densities, particularly at the surface region where the difference between densities of exotic and stable neighbor nuclei is very emphasized. Precise elastic scattering cross sections were measured for the systems 16O + 40Ca, 120Sn, with the aim of helping the construction of an experimental systematics for the real part of the nuclear interaction, and to obtain the experimental ground-state nuclear matter density for the 16O nucleus. As a complement, this work presents: i-) A theoretical systematics for nuclear densities which was performed for the whole mass region throughout the periodic table, ii-) the non-local model, developed to describe the energy dependence of the real part of the nuclear interaction; iii-) a new representation for the absorption of flux due to the reaction channels. This framework has allowed us to obtain a systematization of the optical potential from a consistent heavy-ion elastic scattering data analysis at low and intermediate energies. This analysis resulted a remarkable prediction for a very large elastic scattering cross section data set using a global and fundamental parameter-free model for the optical potential.
|
224 |
Comparison of Heat Output and Microchemical Changes of Palladium Cathodes under Electrolysis in Acidified Light and Heavy WaterSalas Cano, Conrado 01 July 2002 (has links)
Two experiments have been conducted to ascertain if a cell with a palladium cathode, a platinum anode, and a solution of H2SO4 in D2O can produce excess heat under electrolysis compared to a similar cell with H2O. In each experiment, two cells were connected in series with constant current. The two cells were identical except for the fact that the heavy water cell used D2O instead of H2O in the electrolyte. Both cells in each experiment employed Pd cathodes, Pt anodes, and H2SO4 in the solution. On a piece of Pd foil that had been cold-rolled and cleaned like the cathodes but had not been electrolyzed, scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS) failed to find any traces of unexpected elements.
In the first experiment the indication was that the light water cell was slightly warmer despite receiving slightly less power. Small amounts of silver were found on both cathodes after electrolysis.
In the second experiment, the D2O cell produced an excess heat relative to the H2O cell that was too large by at least an order of magnitude to be explainable by chemical reactions or mechanical artifacts.
After electrolysis, it was found that Cd was present on the surface of the H2O cathode at levels of concentration that were variable but generally no less than 4% relative to Pd (above 3σ). The H2O cathode of this second experiment finished electrolysis very straight.
The D2O cell cathode finished severely arched (~30o), with its convex side facing the anode, and covered in a deposit of powdery black substance which was most likely PdS formed accidentally on the first day of this experiment when the D2O cell had been run with the wrong polarity. On this D2O cell cathode, no statistically significant traces of Cd were detected but Ag was present in 2-5% concentration relative to Pd. In some spots, the Ag abundance surpassed 20% that of Pd. The most likely explanation is neutron-induced nuclear transmutation of some of the Pd nuclides with direct release of heat into the solid-state lattice.
|
225 |
Study of a thermonuclear reactor blanket with fissile nuclides.January 1965 (has links)
Bibliography: p. 99-101.
|
226 |
Thermal and chemical aspects of the thermonuclear blanket problem.January 1965 (has links)
Bibliography: p. 111-114.
|
227 |
Brueckner theory of nuclear matterFuchs, Martin B. 04 December 1991 (has links)
Graduation date: 1992
|
228 |
Multi-dimensional simulations of mixing in classical novaeCasanova Bustamante, Jordi 03 November 2011 (has links)
Classical nova explosions are stellar explosions that take place in close binary systems with an energy release only exceeded by gamma-ray bursts and supernova explosions. Matter from the white dwarf flows through the inner lagrangian point and spirals in towards the white dwarf for about 10^4-10^5 years, forming an accretion disk around it. Ultimately, part of this hydrogen-rich matter piles-up on top of the compact object and becomes partially degenerate due to the high densities attained. Consequently, temperature is allowed to rise, but the envelope does not experience any expansion. Actually, this is the key mechanism that controls the subsequent phases and powers a thermonuclear runaway, which is followed by an ejection of part of the accreted envelope. The ejecta are enriched with the products from the nuclear processes, presenting a final metallicity much above solar. This model, introduced in the early 70s, is a solid theory that can account for the gross scenario of nova explosions. Nevertheless, the theory relies on the fact that a mixing episode with matter from the white dwarf core has to take place at the core-envelope interface to successfully account for the high metallicities inferred from observations. During the past 40 years, theoreticians have performed many one-dimensional simulations, which can reproduce the abundances in the ejecta and other important observational properties. However, these calculations performed in spherical symmetry cannot study the mixing process, since they exclude a suite of very important multi-dimensional effects, such as convection. Therefore, multi-dimensional calculations are required to shed light into the mixing episode. In this thesis we have performed two- and three- dimensional simulations of CO novae to study the mixing mechanisms operating at the core-envelope interface, how convection sets in and how the deflagration spreads over the domain, by means of the Eulerian, parallelized, hydrodynamical FLASH code. The two-dimensional results show how convection sets in at the innermost envelope layers, after the appearance of temperature fluctuations that arise from the interface. Convection, in turn, powers the formation of kelvin-Helmholtz instabilities, which efficiently dredge-up 12C from the core and carry it into the envelope, reproducing correctly the high metallicity found in the ejecta. This result solves the controversy generated by the two existing two-dimensional calculations up-to-date. We have also realized a sensitivity study to analyze the impact of some initial parameters, such as the temperature perturbation, resolution of the simulations and the size of the computational domain. The results point out that these parameters have a negligible impact on the degree of mixing and, therefore, the calculations are not affected by numerical artifacts. Although two-dimensional calculations can quantitatively reproduce the mixing episode, they cannot describe correctly the convective pattern due to conservation of vorticity, which translates into recombination of the convective cells. Therefore, we have extended the work to three dimensions and performed the first three-dimesional model of mixing in classical novae up-to-date. These calculations can successfully reproduce the intermittency present in turbulent convection, with an energy cascade into smaller scales which clearly fulfills the Kolmogorov theory, while the thermonuclear runaway continues propagating with almost spherical symmetry. Mixing proceeds through the filamentary structure powered by robust kelvin-Helmholtz instabilitites that arise from the interface, resulting in a CNO enhancement which agrees with observations. This convective profile also generates density contrasts that could be the origin of the inhomogeneous distribution of chemical species. / Les explosions de noves tenen lloc en un sistema estel.lar binari, on un dels estels ha arribat a la fi de la seva vida convertit en una nana blanca. En sistemes binaris molt propers, l'estel acompanyant cedeix part del seu gas (material ric en hidrogen), el qual s'arremolina al voltant de la nana blanca durant prop de 10^4 - 10^5 anys. Una fracció d'aquest material acaba apilant-se a la superfície de l'objecte compacte i esdevé parcialment degenerat com a conseqüència de l'elevada densitat. Aquest fet és clau en el procés, ja que permet que la temperatura augmenti sense que es produeixi una expansió de l'embolcall, desencadenant un allau termonuclear i finalment, l'ejecció de matèria. El material ejectat està enriquit amb els isòtops processats en les reaccions nuclears, presentant una metal.licitat molt superior a la solar. Aquest model, presentat a principis dels anys 70, és una teoria sòlida que explica raonablement l'explosió de noves. No obstant, la teoria rau en el fet que s'ha de produir un procés de barreja entre el material de la nana blanca i el material de les capes més internes de l'embolcall per poder explicar l'alta metal.licitat que s'observa en el material ejectat. Durant els últims 40 anys, s'han fet molts estudis en una dimensió que aconsegueixen reproduir correctament les abundàncies del material ejectat i altres importants propietats observacionals, però que no poden explicar com es produeix el procés de barreja, ja que aquests càlculs amb simetria esfèrica exlouen tota una sèrie d'importants fenòmens multidimensionals. Per tant, per estudiar aquests aspectes de la teoria es requereixen estudis multidimensionals. En aquesta tesi hem realitzat simulacions en dues i tres dimensions de noves de CO per estudiar els mecanismes de barreja que es produeixen a la interfície del nucli de la nana blanca i l'embolcall, com s'estableix la convecció i com es propaga el front deflagratiu, mitjançant el codi hidrodinàmic FLASH, que és Eulerià i està paral.lelitzat. Els resultats en dues dimensions mostren com es genera convecció a les capes més internes de l'embolcall, després de la formació de fluctuacions de temperatura a la interfície. La convecció, al seu torn, origina inestabilitats Kelvin-Helmholtz que transporten eficientment 12C del nucli cap a l'embolcall, aconseguint reproduir correctament el grau de metal.licitat observat. Aquest resultat resol la controvèrsia generada pels dos estudis en dues dimensions realitzats fins ara. També hem realitzat un estudi per analitzar l'impacte dels paràmetres inicials tals com la perturbació inicial, la resolució de les simulacions o les dimensions del domini computacional. Els resultats indiquen que cap d'aquests paràmetres influeix en el grau de barreja final i, per tant, que els càlculs no estan condicionats per aspectes numèrics. Finalment, hem presentat el primer model tridimensional de barreja de noves fet fins ara. Aquest càlcul és necessari, ja que les simulacions bidimensionals, tot i que quantitativament reprodueixen la barreja esperada, no poden representar el patró convectiu correctament, degut a la conservació de la vorticitat, fent que les cel.les convectives esdevinguin cada cop més grans. El nostre càlcul aconsegueix reproduir el comportament intermitent de la turbulència, amb una cascada d'energia que flueix cap a escales cada cop més petites, tal i com prediu la teoria de Kolmogorov, alhora que el front convectiu avança pràcticament amb simetria esfèrica. La barreja procedeix a través de l'estructura filamentosa originada per l'aparició de potents inestabilitats Kelvin-Helmholtz a la interfície, obtenint-se una metal.licitat final a l'embolcall que concorda amb els valors observacionals. Aquest patró convectiu també genera contrastos de densitat que podrien ser l'origen de la distribució inhomogènia que presenten les espècies químiques.
|
229 |
Calculations of nuclear cross sections and astrophysical S-factors for reactions induced by protons and alpha particles on isotopes of copperLomant, Susannah E. January 1999 (has links)
Nuclear reactions induced by neutrons, protons and alpha particles on copper isotopes are being studied in an effort to understand the nucleosynthesis of elements in stars, specifically, the p-process. The p-process occurs toward the end of a star's life and produces those elements which have a high proton to neutron ratio, which are heavier than iron. Little is known about the nature of the p-process-inside stars. Isotopes of copper are studied since they are close in mass number to iron, which has the highest nuclear binding energy. Nuclear cross sections will be calculated for copper, as well as S-factors, which are important from an astrophysical point of view. These values are needed to calculate reaction rates which are the main ingredients for understanding nucleosynthesis. / Department of Physics and Astronomy
|
230 |
WZ scattering at the LHC in the Littlest Higgs model /Moats, Kenneth P. January 1900 (has links)
Thesis (M.SC.) - Carleton University, 2007. / Includes bibliographical references (p. 68-71). Also available in electronic format on the Internet.
|
Page generated in 0.0977 seconds