• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 396
  • 199
  • 91
  • 35
  • 30
  • 17
  • 11
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • Tagged with
  • 1007
  • 180
  • 138
  • 111
  • 110
  • 78
  • 72
  • 70
  • 66
  • 65
  • 62
  • 59
  • 59
  • 57
  • 56
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Neuropsychological and neuroimaging investigations of an inherited disorder of speech and language

Watkins, Kathryn Emma January 1999 (has links)
No description available.
42

A discrete line gamma-ray spectroscopic study of the transitional nucleus 132Ce

Kirwan, A. J. January 1986 (has links)
No description available.
43

HYDROGEN SULFIDES ACTIONS IN THE PARAVENTRICULAR NUCLEUS OF THE HYPOTHALAMUS

Khademullah, CHARLINE SAHARA 18 September 2013 (has links)
Hydrogen sulfide (H2S) is a novel neurotransmitter that has been shown to influence cardiovascular function as well as other autonomic and endocrine functions by targeting a wide range of ion channels. Using whole-cell electrophysiology, I have investigated the potential role of H2S in the regulation of neuronal excitability in the paraventricular nucleus of the hypothalamus (PVN), which is a central relay centre for autonomic and endocrine function. In current-clamp recordings, sodium hydrosulfide hydrate (NaHS), when perfused onto PVN slices at various concentrations (0.1, 1, 10, and 50 mM), elicited a concentration-dependent response relationship from the majority of recorded neurons, with almost exclusively depolarizing effects. Input resistance differences from baseline, and during the NaHS-induced depolarization, uncovered a biphasic response, implicating both a potassium (K+) and non-selective cation conductance. In order to further investigate H2Ss effects on K+ conductances, we used both voltage- and current-clamp techniques to examine the effects of NaHS at either 1 or 10 mM on both the transient and sustained voltage-activated K+ currents in these neurons. We applied TEA+ (10 mM) to isolate the transient/rapidly inactivating current (IA) and 4-AP (5 mM) to isolate the sustained/delayed rectifier current (IK), and were able to show that both of these conductances were significantly reduced by H2S. Finally, we were able to demonstrate, using current-clamp, that when 4-AP and TEA+ were applied together with NaHS, they were able to completely eliminate the previously observed NaHS-induced depolarization, and the effects on membrane potential reversed to show a small hyperpolarization. These data highlight the potential role of H2S as a critical modulator of the voltage-gated repolarizing conductances, IA and IK, which in turn regulate neuronal excitability within the PVN. This can have a large impact on the way neurotransmitters and hormones such as vasopressin, oxytocin, corticotrophin-releasing hormone, and thyrotrophin-releasing hormone are released from the PVN, which influence a wide range of neuroendocrine and autonomic functions such as cardiovascular function, fluid balance, and food intake. / Thesis (Master, Neuroscience Studies) -- Queen's University, 2013-09-13 10:51:34.585
44

A study of the response characteristics of vestibular neurons to static tilt and electrical stimulation of the utricle in cats

Or, To-hang, 柯道行 January 1980 (has links)
published_or_final_version / Physiology / Master / Master of Philosophy
45

REGULATION OF GENOMIC STRUCTURE AND TRANSCRIPTION IN DROSOPHILA

Bauer, Christopher Randal January 2009 (has links)
Within the span of a single human lifetime, we have discovered that DNA is the basis of genetic inheritance, deciphered the genetic code, and determined the entire sequence of multiple human genomes. However, we still have only a basic understanding of many of the processes that regulate DNA structure, function, and dynamics. The work presented in this dissertation describes the roles of two sets of genes that regulate the expression of genetic information and its transmission from one generation to the next.The condensin II complex has been implicated in the maintenance of genomic integrity during cell division and in transcriptional regulation during interphase. These roles stem from its ability to regulate chromosome structure though the mechanisms of this regulation are unclear. Evidence suggests that it is important for chromosome condensation and segregation during mitosis and meiosis. We have shown that this complex regulates the condensation of chromosomes during interphase. Its ability to reduce chromosome axial length provides a mechanism for the establishment of chromosome territories. We have also shown that condensin II differentially regulates interactions between homologous and heterologous DNA sequences. These findings contribute to our understanding of the overall structure of the nucleus, the regulation of chromosome structure, and the regulation of gene expression.The function of the Drosophila gene, sticky, is poorly understood. It contributes to cytokinesis by phosphorylating myosin II, but it also has a role in the regulation of chromatin structure. Mutations in sticky are associated with a wide range of developmental abnormalities. We provide evidence that this gene regulates the expression of numerous other genes which contribute to the phenotypes observed when sticky is mutated. We also show that sticky function overlaps with that of dfmr1, an ortholog of the gene associated with the most common form of human mental retardation. These findings contribute to our understanding of transcriptional regulation in chromatin and its implications in development and disease.
46

The organization of memory in the brain : role of caudate nucleus and hippocampus

Packard, Mark G. January 1990 (has links)
The present experiments were designed to examine the hypothesis that the hippocampus and caudate nucleus are parts of independent memory systems which differ in the type of memory they mediate. In experiment 1, the mnemonic functions of the hippocampus and caudate were doubly dissociated; lesions of the caudate nucleus impaired acquisition of the "habit memory" component of the 4 x 4 radial maze task, but had no effect the "cognitive memory" component of the task. Lesions of the fimbria-fornix produced the opposite behavioral dissociation. In experiment 2, lesions of the caudate nucleus produced a transient deficit in cognitive win-shift radial maze behavior when rats were allowed to obtain food from maze arms on an unlimited basis prior to win-shift training. In contrast, lesions of the caudate had no effect on win-shift acquisition when rats were allowed to explore an empty maze prior to win-shift training. These results suggest that reinforcement contingencies may be important in determining the type of memory process initiated by a training experience. In experiments 3ab, systemic post-training injection of the dopamine (DA) agonist D-amphetamine (D-AMP) and the DA D2 receptor agonist LY 171555, but not the DA D1 receptor agonist SKF-38393, improved acquisition on both a habit memory win-stay radial maze task, and a cognitive memory win-shift radial maze task. In experiments 4ab, the mnemonic functions of the hippocampus and caudate nucleus were doubly dissociated using post-training intracerebral injections of these same DA agonists. Post-training intracaudate injection of D-AMP, LY 171555, and SKF-38393 improved acquisition of win-stay, but not win-shift radial maze behavior. Post-training intrahippocampal injection of these DA agonists produced the opposite behavioral dissociation. Taken together, the results are consistent with the hypothesis that the caudate nucleus mediates the acquisition of habit memory, while the hippocampus mediates the acquisition
47

Phase regulation of the SCN circadian clock serotonergic and neuropeptidergic mechanisms /

Kaur, Gagandeep. January 2009 (has links)
Thesis (Ph.D.)--Kent State University, 2009. / Title from PDF t.p. (viewed Apr. 15, 2010). Advisor: J. David Glass. Keywords: Suprachiasmatic nucleus; serotonin; nonphotic; arginine vasopressin; hamster. Includes bibliographical references (p. 91-111).
48

Altersbedingte Veränderungen des inhibitorischen Systems im Nucleus Cochlearis der Mongolischen Wüstenrennmaus (Meriones Unguiculatus)

Stehle, Katrin January 2010 (has links)
Regensburg, Univ., Diss., 2010.
49

Vergleichende Untersuchung zwischen atlasbasierter und MRT-gestützter Planung bei der tiefen Hirnstimulation bei der Parkinson-Erkrankung am Beispiel des Nucleus subthalamicus

Schödel, Petra January 2009 (has links)
Regensburg, Univ., Diss., 2009.
50

Die Rolle des Nucleus accumbens bei der Akquisition und Expression von instrumentellem Verhalten der Ratte

Giertler, Christian. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2003--Stuttgart.

Page generated in 0.0245 seconds