• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Motion Planning for a Reversing Full-Scale Truck and Trailer System

Holmer, Olov January 2016 (has links)
In this thesis improvements, implementation and evaluation have been done on a motion planning algorithm for a full-sized reversing truck and trailer system. The motion planner is based on a motion planning algorithm called Closed-Loop Rapidly-exploring Random Tree (CL-RRT). An important property for a certain class of systems, stating that by selecting the input signals in a certain way the same result as reversing the time can be archived, is also presented. For motion planning this means that the problem of reversing from position A to position B can also be solved by driving forward from B to A and then reverse the solution. The use of this result in the motion planner has been evaluated and has shown to be very useful. The main improvements made on the CL-RRT algorithm are a faster collision detection method, a more efficient way to draw samples and a more correct heuristic cost-to-go function. A post optimizing or smoothing method that brings the system to the exact desired configuration, based on numerical optimal control, has also been developed and implemented with successful results. The motion planner has been implemented and evaluated on a full-scale truck with a dolly steered trailer prepared for autonomous operation with promising results.
2

Structure-Exploiting Numerical Algorithms for Optimal Control

Nielsen, Isak January 2017 (has links)
Numerical algorithms for efficiently solving optimal control problems are important for commonly used advanced control strategies, such as model predictive control (MPC), but can also be useful for advanced estimation techniques, such as moving horizon estimation (MHE). In MPC, the control input is computed by solving a constrained finite-time optimal control (CFTOC) problem on-line, and in MHE the estimated states are obtained by solving an optimization problem that often can be formulated as a CFTOC problem. Common types of optimization methods for solving CFTOC problems are interior-point (IP) methods, sequential quadratic programming (SQP) methods and active-set (AS) methods. In these types of methods, the main computational effort is often the computation of the second-order search directions. This boils down to solving a sequence of systems of equations that correspond to unconstrained finite-time optimal control (UFTOC) problems. Hence, high-performing second-order methods for CFTOC problems rely on efficient numerical algorithms for solving UFTOC problems. Developing such algorithms is one of the main focuses in this thesis. When the solution to a CFTOC problem is computed using an AS type method, the aforementioned system of equations is only changed by a low-rank modification between two AS iterations. In this thesis, it is shown how to exploit these structured modifications while still exploiting structure in the UFTOC problem using the Riccati recursion. Furthermore, direct (non-iterative) parallel algorithms for computing the search directions in IP, SQP and AS methods are proposed in the thesis. These algorithms exploit, and retain, the sparse structure of the UFTOC problem such that no dense system of equations needs to be solved serially as in many other algorithms. The proposed algorithms can be applied recursively to obtain logarithmic computational complexity growth in the prediction horizon length. For the case with linear MPC problems, an alternative approach to solving the CFTOC problem on-line is to use multiparametric quadratic programming (mp-QP), where the corresponding CFTOC problem can be solved explicitly off-line. This is referred to as explicit MPC. One of the main limitations with mp-QP is the amount of memory that is required to store the parametric solution. In this thesis, an algorithm for decreasing the required amount of memory is proposed. The aim is to make mp-QP and explicit MPC more useful in practical applications, such as embedded systems with limited memory resources. The proposed algorithm exploits the structure from the QP problem in the parametric solution in order to reduce the memory footprint of general mp-QP solutions, and in particular, of explicit MPC solutions. The algorithm can be used directly in mp-QP solvers, or as a post-processing step to an existing solution. / Numeriska algoritmer för att effektivt lösa optimala styrningsproblem är en viktig komponent i avancerade regler- och estimeringsstrategier som exempelvis modellprediktiv reglering (eng. model predictive control (MPC)) och glidande horisont estimering (eng. moving horizon estimation (MHE)). MPC är en reglerstrategi som kan användas för att styra system med flera styrsignaler och/eller utsignaler samt ta hänsyn till exempelvis begränsningar i styrdon. Den grundläggande principen för MPC och MHE är att styrsignalen och de estimerade variablerna kan beräknas genom att lösa ett optimalt styrningsproblem. Detta optimeringsproblem måste lösas inom en kort tidsram varje gång som en styrsignal ska beräknas eller som variabler ska estimeras, och således är det viktigt att det finns effektiva algoritmer för att lösa denna typ av problem. Två vanliga sådana är inrepunkts-metoder (eng. interior-point (IP)) och aktivmängd-metoder (eng. active-set (AS)), där optimeringsproblemet löses genom att lösa ett antal enklare delproblem. Ett av huvudfokusen i denna avhandling är att beräkna lösningen till dessa delproblem på ett tidseffektivt sätt genom att utnyttja strukturen i delproblemen. Lösningen till ett delproblem beräknas genom att lösa ett linjärt ekvationssystem. Detta ekvationssystem kan man exempelvis lösa med generella metoder eller med så kallade Riccatirekursioner som utnyttjar strukturen i problemet. När man använder en AS-metod för att lösa MPC-problemet så görs endast små strukturerade ändringar av ekvationssystemet mellan varje delproblem, vilket inte har utnyttjats tidigare tillsammans med Riccatirekursionen. I denna avhandling presenteras ett sätt att utnyttja detta genom att bara göra små förändringar av Riccatirekursionen för att minska beräkningstiden för att lösa delproblemet. Idag har behovet av  parallella algoritmer för att lösa MPC och MHE problem ökat. Att algoritmerna är parallella innebär att beräkningar kan ske på olika delar av problemet samtidigt med syftet att minska den totala verkliga beräkningstiden för att lösa optimeringsproblemet. I denna avhandling presenteras parallella algoritmer som kan användas i både IP- och AS-metoder. Algoritmerna beräknar lösningen till delproblemen parallellt med ett förutbestämt antal steg, till skillnad från många andra parallella algoritmer där ett okänt (ofta stort) antal steg krävs. De parallella algoritmerna utnyttjar problemstrukturen för att lösa delproblemen effektivt, och en av dem har utvärderats på parallell hårdvara. Linjära MPC problem kan också lösas genom att utnyttja teori från multiparametrisk kvadratisk programmering (eng. multiparametric quadratic programming (mp-QP)) där den optimala lösningen beräknas i förhand och lagras i en tabell, vilket benämns explicit MPC. I detta fall behöver inte MPC problemet lösas varje gång en styrsignal beräknas, utan istället kan den förberäknade optimala styrsignalen slås upp. En nackdel med mp-QP är att det krävs mycket plats i minnet för att spara lösningen. I denna avhandling presenteras en strukturutnyttjande algoritm som kan minska behovet av minne för att spara lösningen, vilket kan öka det praktiska användningsområdet för mp-QP och explicit MPC.
3

Numerical Optimal Control of Hybrid Electric Trucks : Exhaust Temperature, NOx Emission and Fuel Consumption

Andersson, Fredrik, Andersson, Hampus January 2018 (has links)
The controls for a parallel hybrid electric truck are optimized using numerical optimal control. Trade-offs between catalyst light-off times, NOx emission and fuel consumption have been investigated for cold starts at two operating points, as well as temperature differences between conventional and hybrid powertrains during WHTC (World Harmonized Transient Cycle). A model describing the temperature dynamics of the aftertreatment system is implemented as well as temperature-based deNOx performance for both Cu-Zeolite and Fe-Zeolite catalysts. Control is performed in a piecewise linear fashion, resulting in a total of 23 states including control signals. It is shown that high temperatures can be a larger threat to catalyst performance when running the WHTC than low temperatures, for both conventional and hybrid powertrains. Furthermore, decreasing the light-off time of the catalyst does not always lead to decreased NOx emission, instead there is a trade-off between light-off time and NOx emission. It is found that there are controls that will realize decreased NOx emission for a hybrid truck during cold starts at the expense of increased fuel consumption.
4

Optimal control and machine learning for humanoid and aerial robots / Contrôle optimal et apprentissage automatique pour robots humanoïdes et aériens

Geisert, Mathieu 23 April 2018 (has links)
Quelle sont les points communs entre un robot humanoïde et un quadrimoteur ? Et bien, pas grand-chose… Cette thèse est donc dédiée au développement d’algorithmes permettant de contrôler un robot de manière dynamique tout en restant générique par rapport au model du robot et à la tâche que l’on cherche à résoudre. Le contrôle optimal numérique est pour cela un bon candidat. Cependant il souffre de plusieurs difficultés comme un nombre important de paramètres à ajuster et des temps de calcul relativement élevés. Ce document présente alors plusieurs améliorations permettant d’atténuer ces difficultés. D’un côté, l’ordonnancement des différentes tâches sous la forme d’une hiérarchie et sa résolution avec un algorithme adapté permet de réduire le nombre de paramètres à ajuster. D’un autre côté, l’utilisation de l’apprentissage automatique afin d’initialiser l’algorithme d’optimisation ou de générer un modèle simplifié du robot permet de fortement diminuer les temps de calcul. / What are the common characteristics of humanoid robots and quadrotors? Well, not many… Therefore, this thesis focuses on the development of algorithms allowing to dynamically control a robot while staying generic with respect to the model of the robot and the task that needs to be solved. Numerical optimal control is good candidate to achieve such objective. However, it suffers from several difficulties such as a high number of parameters to tune and a relatively important computation time. This document presents several ameliorations allowing to reduce these problems. On one hand, the tasks can be ordered according to a hierarchy and solved with an appropriate algorithm to lower the number of parameters to tune. On the other hand, machine learning can be used to initialize the optimization solver or to generate a simplified model of the robot, and therefore can be used to decrease the computation time.
5

Real-time Optimal Braking for Marine Vessels with Rotating Thrusters

Jónsdóttir, Sigurlaug Rún January 2022 (has links)
Collision avoidance is an essential component of autonomous shipping. As ships begin to advance towards autonomy, developing an advisory system is one of the first steps. An advisory system with a strong collision avoidance component can help the crew act more quickly and accurately in dangerous situations. One way to avoid colission is to make the vessel stop as fast as possible. In this work, two scenarios are studied, firstly, stopping along a predefined path, and secondly, stopping within a safe area defined by surrounding obstacles. The first scenario was further worked with to formulate a real-time solution. Movements of a vessel, described in three degrees of freedom with continuous dynamics, were simulated using mathematical models of the forces acting on the ship. Nonlinear optimal control problems were formulated for each scenario and solved numerically using discretization and a direct multiple shooting method. The results for the first problem showed that the vessel could stop without much deviation from the path. Paths with different curvatures were tested, and it was shown that a slightly longer distance was traveled when the curvature of the path was greater. The results for the second problem showed that the vessel stays within the safe area and chooses a relatively straight path as the optimal way of stoping. This results in a shorter distance traveled compared to the solution of the first problem. Two different real-time approaches were formulated, firstly a receding-horizon approach and secondly a lookup-based approach. Both approaches were solved with real-time feasibility, where the receding-horizon approach gave a better solution while lookup-based approach had a shorter computational time.

Page generated in 0.1035 seconds