• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Noggrannhetskontroll av laserdata för ny nationell höjdmodell

Owemyr, Pär, Lundgren, Jonas January 2010 (has links)
Ny nationell höjdmodell är ett projekt som utförts av Lantmäteriet på begäran av regeringen sedan år 2009 och beräknas vara färdigt år 2016. Datainsamling sker med hjälp av flygburen laserskanning. Syftet med studien är att kontrollera noggrannheten av laserdata som ska användas för framställning av ny nationell höjdmodell i Sverige. Noggrannhetskontrollen utfördes på området Årsunda – Ockelbo (syd – nord) och Storvik – Forsbacka (väst – öst). Kvalitetskontroll av laserdata/Digital höjdmodell (DHM) har varit en viktig fråga i flygburen laserskanning genom åren. Vid noggrannhetskontroll val-des att utgå ifrån ett mätningsutförande med profiler enligt Teknisk specifikation SIS-TS 21145:2007 ”Byggmätning – Statistisk provning av digital terrängmodell”. Markslagstyper som undersökts är as-faltyta, barrskog, gräsyta, kalhygge, lövskog, mosse och ängsmark. Mjukvaran TerraScan användes för noggrannhetskontroll av laserdata. Lantmäteriet har som krav att RMS ej får överstiga 0,2 m på öppna, plana och väldefinierade ytor. Detta krav uppfylls för alla markslagtyper. Noggrannheten i laserdata påverkas bl.a. kuperingsgrad och vegetation. Ytterligare studier är önskvärda för jämförelse mellan olika grader av kupering i samma markslagstyp. / The new national elevation model is a project undertaken by the National Land Survey at the request of the government since 2009 and is expected to be completed in 2016. Data collection is performed by means of airborne laser scanning. The purpose of this study is to verify the accuracy of laser data to be used for the production of new national height model in Sweden. Accuracy assessment was con-ducted in the area Årsunda – Ockelbo (south-north) and Storvik – Forsbacka (west-east). Quality as-surance of laser data/Digital elevation model (DEM) has been an important issue in airborne laser scanning through the years. The accuracy assessment was conducted using measurement of profiles according to Technical Specification SIS-TS 21145:2007 “Engineering survey for construction works – Statistical test of digital terrain model”. The terrain types investigated is asphalt, coniferous forest, grass surface, clear cut forest, deciduous forest, bog and grassland. TerraScan software was used for accuracy assessment of laser data and measurements of reference points. National Land Survey has announced that RMS should not exceed 0.2 m in open, flat and well-defined surfaces. This demand is met for all land types. The accuracy of laser data is influenced by the variation of the elevations and the density of the vegetation. Further studies are needed for comparison of different degrees of terrain roughness in similar terrain types.
2

Vegetation och lutningars påverkan på osäkerheten hos laserdata för en ny nationell höjdmodell

Kulla, Hanna, Mörtberg, Maria January 2012 (has links)
Lantmäteriet har fått i uppdrag att ta fram en Ny Nationell Höjdmodell (NNH) över Sverige. Höjddata samlas in med flygburen laserskanning (FLS) och osäkerheten i höjd ligger generellt sett under 0,1 m på hårda plana ytor, dock kan osäkerheten öka avsevärt i terrängtyper med tät vegetation eller i områden med starkt sluttande terräng. Syftet med detta examensarbete är att kontrollera hur osäkerheten påverkas av olika vegetationstyper samt olika lutningsgrader. Provningen utfördes i delar av Avesta och Hedemora kommun i april 2012, där nio olika provytor kontrollerades enligt den tekniska specifikationen SIS-TS 21145:2007 ”Byggmätning – Statistisk provning av digital terrängmodell”. Kontrollprofiler mättes in i provytorna med Nätverks Real Time Kinematic Global Navigation Satellite System (NRTK-GNSS) för de provytor detta var möjligt, övriga provytor inmättes med totalstation. Analysen genomfördes i programvaran TerraScan där triangulerat laserdata jämfördes mot inmätta kontrollprofiler. Resultatet visar att laserdata ligger högre än markytan för alla provytor. Medelavvikelsen för de olika vegetationstyperna ligger mellan 0,105 och 0,593 m där systematiska avvikelser upptäcktes i flera provytor. För de olika lutningsgraderna ligger medelavvikelsen mellan 0,024 och 0,122 m, där en tydlig ökning sker vid 40 graders lutning. Troliga orsaker till de medelavvikelser som erhållits för vegetationstyperna är att punkter felaktigt klassificerats som mark, samt att det i vissa fall helt saknas punkter på markytan. För provytan med 40 graders lutning beror medelavvikelsen troligen på att det horisontella felet har inverkat på det vertikala. Tät vegetation påverkar osäkerheten i höjd men något tydligt samband mellan lutningsgrad och osäkerhet kan inte ses. / Lantmäteriet – the Swedish mapping, cadastral and land registration authority, has been commissioned to develop a new national elevation model of Sweden and the data is collected by airborne laser scanning. The uncertainty in height is generally less than 0,1 m on hard, flat surfaces but in terrain with dense vegetation and areas with high inclination the uncertainty can increase significantly. The purpose of this study is to check how the uncertainty is affected by different vegetation types and different degrees of inclination. The control was performed in parts of Avesta and Hedemora municipality in April 2012, where nine different plots were checked according to the technical specification SIS-TS 21145:2007 “Engineering survey for construction works – Statistical test of digital terrain model”. Profiles were measured with Network Real Time Kinematic Global Navigation Satellite System (NRTK-GNSS) where possible, and otherwise a total station was used. The analysis was performed in the software TerraScan in which triangulated laser data were compared with the control profiles. The result shows that laser measured heights are higher than the actual surface. The average deviation of the different vegetation types range from 0,150 to 0,593 m and a systematic deviation was detected in some sample surfaces. For the different slope rates the average deviation ranged from 0,024 to 0,122 m where a clear increase could be seen at 40 degrees inclination. Likely reasons for the deviations obtained for different vegetation types are that points incorrectly has been classified as ground, and that in some cases points on the ground are completely missing. The mean deviation for the sample surface with 40 degrees inclination is probably due to the influence of a horizontal error on the vertical error. Dense vegetation affects the uncertainty in height, but no apparent relationship between inclination and uncertainty can be seen.
3

Rekonstruktion av högsta kustlinjen (HK) med ny nationell höjdmodell (NNH) och LiDAR : En studie över västra Gästrikland

Stigson, Jens January 2016 (has links)
Denna studie har med hjälp av den nya nationella höjdmodellen (NNH), som bygger på LiDAR-teknik, försökt att i västra Gästrikland hitta och analysera de landskaps- och terrängformer som kallas för högsta kustlinjen (HK). Dessa forna strandlinjer efter den senaste istiden har undersökts tidigare i studieområdet med hjälp av avvägningsinstrument och genom jordprover på 11 lokaler åren 1925-1930 och på 8 lokaler åren 1954-1960. I studien har det undersökts hur väl det går att identifiera nya som äldre HK-lokaler, jämföra de äldre undersökningarna med resultatet från dagens moderna datorteknik. Genom att i ett GIS-program skapa en terrängskuggning av NNH, som innan leverans har särskilt mark- och vattenytan från vegetation och antropogena objekt, har höjder kunnat mätas längs HK-linjer med cirka 50 meters avstånd. På grund av den snabba landhöjningen de första 500 åren efter avsmältningen är de högst belägna spåren av stranderosion svårare att hitta än de lägre. Av de 25 lokaler som hittades och analyserades var 11 lokaler på platser som inte tidigare undersökts eller där HK tidigare inte har kunnat fastställas. Av de undersökta lokalerna klassades 10 som osäkra, 11 som halvskarpa, 3 som skarpa och 1 som ett HK-delta. Från söder mot norr i västra Gästrikland stiger HK med cirka 27 meter från 194 meter över havet till 221 meter över havet. Skillnaderna jämfört med de tidigare undersökningarna är cirka ±2 meter, med undantag för 4 lokaler med skillnader från cirka 4 meter över till cirka 10 meter under. Förutom de 25 lokalerna hittades 6 mycket osäkra lokaler där HK inte gick att fastställa. Av dessa ligger 5 i ett område nordost och öster om Hofors. LiDAR-tekniken ger kvantitativt fler lokaler i områden som eventuellt tidigare inte har kunnat besökas och är en mer tidseffektiv metod.
4

Höjdmodellering med laserdata : Studie av Kärsön, Ekerö med fokus på upplösning, datalagring samt programvara

Löfquist, Johanna January 2012 (has links)
The New National Elevation Model (NNH) is a new high-resolution digital elevation model (DEM) of Sweden from airborne laser scanning. It creates many new opportunities, particularly in the area of flood mapping. NNH is provided by Lantmäteriet in two formats, both in raw LIDAR (Light Detection and Ranging) data and in grid format with two meter resolution. These alternatives have advantages and disadvantages and the aim of this thesis research is to identify these. One of the focuses of the study is data storage and thus data structure analysis, resolution and storage facilities. The research questions are: Why and in what context the different NNH-products from the National Land Survey are used (DEM 2+ or point cloud)? What constraints and opportunities are created by the different options, mainly in terms of different software, resolution, and data storage? The study area is Kärsön in Ekerö municipality located in Stockholms län and has an approximate area of 25 square kilometers. The study is divided into two parts. The first objective is to identify the consequences of using different software to create DEM from pointcloud compared to the DEM2+ model. Height models with a two meter resolution are created in FME and ArcGIS. The models are then compared with the grid from Lantmäteriet, created in TerraScan. The second objective is to examine the impact of the change in resolution, both the storage aspect and both the accuracy aspect. Inverse Distance Weighted (IDW) is an interpolation method which in previous studies proved to have the best results on high resolution LIDAR data. This model was tested and compared with a model from FMEs built-in function and the model from Lantmäteriet wich are based on triangulation (also proved a good method in previous studies).  The grid created in TerraScan has good properties such as accuracy. The results show that the built-in ArcGIS model is not sufficient for the purposes of the model. Flood mapping requires continuous surfaces and the model lacks large areas of data. However, there are other aspects such as the break lines, these cannot be added to the TerraScan model or in the IDW but in the FME-modeler it is possible. In addition, it is not possible to edit the model that is delivered from Lantmäteriet. If there are outliers in the data, they will have much impact on the result. With a model created from the point cloud it is easy to remove these outliers. Increased resolution gives a quadratic increase in storage space so it is considered important not to use a resolution that is not really necessary.  If the purpose of the analysis requires higher resolution than two meters it is possible to achieve higher accuracy for areas with high point density. The raw data format also provides opportunities to create additional models with other uses, building models or forest inventory application can for example be extracted from the data. If the purpose is that the finished grid model is adequate, there is no direct reason to spend time creating a new model. But for a user with knowledge of laser data structure and processing, creating elevation models from raw LIDAR data could give advantages.

Page generated in 0.1314 seconds