• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Inégalites d'observabilité et résolution adaptative de l'équation de Vlasov par éléments finis hiérarchiques

Mehrenberger, Michel 15 December 2004 (has links) (PDF)
La premiere partie est consacree a l'etude d'inegalites d'observabilite, qui interviennent en theorie du controle.<br />On donne ainsi un theoreme abstrait qui permet de deduire l'observabilite d'un systeme par perturbation compacte, avec une <br />condition affaiblie sur l'operateur perturbe. Ce theoreme est ensuite applique a l'observabilite de certains systemes <br />faiblement couples. On demontre aussi l'optimalite d'un theoreme recent concernant une generalisation de l'identite de <br />Parseval aux differences divisees d'exponentielles. La deuxieme partie de ce travail est consacree a la resolution numerique <br />de l'equation de Vlasov en utilisant des schemas de type semi-lagrangien. On demontre dans un premier temps la convergence de schemas d'ordre eleve arbitraire, en completant des resultats precedents. On developpe ensuite une nouvelle methode <br />numerique basee sur une interpolation par elements finis hierarchiques biquadratiques, qui permet ici une parallelisation <br />efficace. Dans le cadre d'une reconstruction affine par maille, on definit une strategie de raffinement et des quantites qui <br />controlent l'erreur produite a chaque pas de temps pour construire finalement un algorithme adaptatif dont on montre la convergence.
2

Inégalités d'Ingham et schémas semi-lagrangiens pour l'équation de Vlasov

Mehrenberger, Michel 05 October 2012 (has links) (PDF)
Dans une première partie, on rassemble plusieurs résultats en théorie du contrôle autour des inégalités d'Ingham, généralisations de l'égalité de Parseval, qui inter- viennent pour montrer l'observabilité, la contrôlabilité ou la stabilisation frontière ou interne de l'équation des ondes ou d'équations similaires dans certains cas parti- culiers. On s'intéresse dans un premier temps à l'optimalité de ce type d'inégalités en généralisant un résultat précédent au cas vectoriel. On développe ensuite un théo- rème de type Ingham adapté pour traiter le cas d'une géométrie cartésienne. Enfin, on donne des résultats d'observabilité dans le cas d'approximations numériques. Dans une seconde partie, on présente les méthodes semi-Lagrangiennes qui sont composées essentiellement de deux ingrédients : calcul des caractéristiques le long desquelles la fonction de distribution est constante et étape d'interpolation. On ana- lyse des schémas d'ordre élevé en temps pour le système de Vlasov-Poisson 1D×1D, basés sur le splitting directionnel, qui est une succession d'étapes de transport li- néaire. On étudie alors les méthodes semi-Lagrangiennes dans ce cas particulier et on fait le lien entre différentes formulations. On obtient également un théorème de convergence pour le système de Vlasov-Poisson dans ce cadre, qui reste valable pour des petits déplacements. On développe ensuite ce type de méthodes dans un cadre plus général, en se basant sur le splitting uni-dimensionnel conservatif, avec une variante de type Galerkin discontinu. Dans une dernière partie, on étudie l'opérateur de gyromoyenne qui intervient en physique des plasmas pour prendre en compte des corrections de rayon de Larmor fini. Enfin, on discute de la problématique de la divergence discrète nulle qui donne une compatibilité entre le calcul du champ et la méthode numérique de transport.

Page generated in 0.0591 seconds