• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 3
  • Tagged with
  • 12
  • 12
  • 7
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Dynamical change at tidewater glaciers examined using time-lapse photogrammetry

How, Penelope January 2018 (has links)
Retreating glaciers and ice sheets provide a significant contribution to sea level rise, which will affect future populations and their activities. Accurate sea level projections are needed in order to best inform policy makers, but these projections are limited by our understanding of dynamical change at marine-terminating glaciers. Terrestrial time-lapse photography has proved to be a viable approach for obtaining high-detail observational records, and is used here to examine signals of dynamical change at two tidewater glaciers in Svalbard. Photogrammetric measurements were extracted using PyTrx (`Python Tracking'), a new photogrammetry toolbox that has been developed here for deriving velocities (e.g. glacier surface velocity), surface areas (e.g. supraglacial lake area, surfacing plume area), and line distances (e.g. terminus profiles). PyTrx has been created as a Python-alternative photogrammetry software, and offers additional functionality to the typical monoscopic feature-tracking toolboxes that are currently available. Subglacial hydrology and its relation to basal sliding were examined at Kronebreen, Svalbard. The results revealed a difference in flow efficiency between the north and south regions of the glacier tongue, which influences spatial patterns in surface velocities. Long-term changes in ice flow were concluded to be controlled by the location of effcient and inefficient drainage, and the position of regions where water is stored and released. Changes in terminus conditions and calving processes were examined at Tunabreen, a surge-type tidewater glacier. Observations suggested that atmospheric forcing plays a larger role in terminus stability than previously considered, and it is likely that terminus dynamics at Tunabreen are the product of a unique interplay between oceanic and atmospheric forcing which are shaped by the glacier's surge-type nature. Additionally, calving activity at Tunabreen can be characterised as high-frequency, low-magnitude events, and a high proportion of its long-term calving activity can be attributed to the rate of under-cutting at the terminus. In all, these studies demonstrate that long-term changes in glacier dynamics are dictated by the small changes in basal and terminus conditions, and how they vary from year-to-year. Future research now needs to be directed towards understanding how small-scale processes vary over multiple melt seasons, in order to establish how they operate at longer timescales. PyTrx provides an appropriate basis to continue this work and expand the capabilities of the toolbox.
2

Validating the use of airborne remote sensing in the coastal zone and its application to suspended sediment flux estimation

Robinson, Marie-Claire January 1999 (has links)
Coastal and estuarine environments are dynamic yet highly sensitive which makes them particularly susceptible to any changes dictated by external forces. The interaction between environmental forces and those imposed by humans who live and work in the area is a very delicate one and needs to be considered through an holistic management approach to ensure the maintenance of a sustainable equilibrium. The use of airborne remote sensing in the coastal zone has been employed and validated for the specific aims of suspended particulate matter (SPM) concentration and flux quantification in the Humber Estuary and sea-surface temperature and salinity determination in the Tweed Estuary. Routines for the effective radiometric, atmospheric, thermal and geometric correction of Compact Airborne Spectrographic Imager (CASQ and Airborne Thematic Matter (ATM) data were tested and enhanced. Validations at all stages were executed through comparison with sea-based optical data acquired coincident with the images. The data acquired from the sea-surface also yielded important information regarding the nature and content of the waters. Water classification techniques were addressed and a new algorithm for use in case II waters based on the Austin & Petzold (1981) K^{490) routine derived. A new algorithm to determine SPM concentration in the Humber Estuary from CASI images was successfully determined and validated. SPM flux estimates were ascertained through the incorporation of image data, hydrodynamic models and depth profiles determined from hydrographic charts. In the Tweed Estuary, ATM images were used to determine sea-surface temperature and salinity using thermal image calibration and comparison with surface monitoring. The results provide an hitherto unseen insight into the dynamics of the Humber and the Tweed Estuaries. In particular, information regarding SPM concentration and fluxes in the Humber supports the so far unproved hypothesis that most of the SPM moves into and out of the mouth in elongated streaks. The use of the width of a streak (or patch) to predict the SPM concentration and / or flux and so eliminate the necessity for surface-based monitoring was addressed. Algorithms to determine SPM concentration and flux were devised using patch size and within-patch water depth alone. A model to apply these algorithms to all data was unsuccessful due to the sparse temporal coverage of the image data. The analyses exemplified in this study give an invaluable insight into the forces at play in coastal and estuarine environments and would provide key information sources for hydrodynamic modellers and coastal zone managers.
3

Impact of the Southern ocean winds on sea-ice - ocean interaction and its associated global ocean circulation in a warming world

Cheon, Woo Geunn 15 May 2009 (has links)
This dissertation discusses a linkage between the Southern Ocean (SO) winds and the global ocean circulation in the framework of a coarse-resolution global ocean general circulation model coupled to a sea-ice model. In addition to reexamination of the conventional linkage that begins with northward Ekman transport and extends to the North Atlantic (NA) overturning, the author investigates a new linkage that begins with the Southern Hemisphere (SH) sea-ice – ocean interaction perturbed by the anomalous SO winds and extends to the SH overturning, the response of the NA overturning, and the long-term baroclinic adjustment of the Antarctic Circumpolar Current (ACC). How the above two linkages will interact with each other in a warming world is also investigated. An interactive momentum flux forcing, allowing for the strength of momentum flux between atmosphere and sea ice to vary in response to the simulated sea-ice conditions, enhances wind-driven ice divergence to increase the fraction of leads and polynyas, which increases dense water formation, and thus intensifies convection. Within three experimental frameworks, this increased dense water consistently increases the Antarctic Bottom Water formation, which directly intensifies the SH overturning and indirectly weakens the NA overturning. As a result of the hemispheric change in overturning circulations, the meridional density gradient across the ACC appears to increase, ultimately increasing the baroclinic part of the ACC via an enhanced thermal wind shear. Subsequently, impacts of the poleward shifted and intensified SH subpolar westerly winds (SWWs) on the global ocean circulation are investigated in phases. When the SWWs are only shifted poleward, the effect of the anomalous winds is transmitted to the northern NA, decreasing both the NA overturning and the North Atlantic Deep Water (NADW) outflow. However, when the SWWs are shifted poleward and intensified, this effect is cut off by the intensified Deacon cell overturning, and is not transmitted to the northern NA, and instead increases the NADW outflow substantially. To sum up, with respect to the SO winds perturbed by the global warming, the SH overturning cell and the NADW outflow increase, leading to an increase in the volume transport of the ACC.
4

The Lower-Stratospheric Response to 11-Yr Solar Forcing: Coupling to the Troposphere–Ocean Response

Hood, Lon L., Soukharev, Boris E. 06 1900 (has links)
The origin of the tropical lower-stratospheric response to 11-yr solar forcing and its possible coupling to a troposphere–ocean response is investigated using multiple linear regression (MLR) analyses of stratospheric ozone and temperature data over the 1979–2009 period and tropospheric sea level pressure (SLP) data over the 1880–2009 period. Stratospheric MLR results, comparisons with simulations from a chemistry–climate model, and analyses of decadal variations of meridional eddy heat flux indicate that the tropical lower-stratospheric response is produced mainly by a solar-induced modulation of the Brewer–Dobson circulation (BDC), with a secondary contribution from the Hadley circulation in the lowermost stratosphere. MLR analyses of long-term SLP data confirm previous results indicating a distinct positive response, on average, during the northern winter season in the North Pacific. The mean response in the Northern Hemisphere resembles a positive Arctic Oscillation mode and can also be characterized as “La Niña–like,” implying a reduction of Rossby wave forcing, a weakening of the BDC, and an increase in tropical lower-stratospheric ozone and temperature near solar maxima. However, MLR analyses of different time periods show that the Pacific SLP response is not always present during every cycle; it was most clearly detected mainly during the ~1938–93 period when 11-yr solar variability was especially strong. During the 1979–93 period, the SLP response was strongly present when the lower-stratospheric responses were large. But during the 1994–2009 period, the SLP response was much less significant and the lower-stratospheric responses were weak, supporting the hypothesis that the lower-stratospheric and surface climate responses are dynamically coupled.
5

Modelling submarine melting at tidewater glaciers in Greenland

Slater, Donald Alexander January 2017 (has links)
The recent thinning, acceleration and retreat of tidewater glaciers around Greenland suggests that these systems are highly sensitive to a change in climate. Tidewater glacier dynamics have already had a significant impact on global sea level, and, given projected future climate warming, will likely continue to do so over the coming century. Understanding of the processes connecting climatic change to tidewater glacier response is, however, at an early stage. Current leading thinking links tidewater glacier change to ocean warming by submarine melting of glacier calving fronts, yet the process of submarine melting remains poorly understood. This thesis combines modelling and field data to investigate submarine melting at tidewater glaciers, ultimately seeking to constrain the sensitivity of the Greenland Ice Sheet to climate change. Submarine melting is thought to be enhanced where subglacial runoff enters the ocean and drives energetic ice-marginal plumes. In this thesis, two contrasting models are used to examine the dynamics of these plumes; the Massachusetts Institute of Technology general circulation model (MITgcm) and the simpler buoyant plume theory (BPT). The first result of this thesis, obtained with the MITgcm, is that the spatial distribution of subglacial runoff at the grounding line of a tidewater glacier is a key control on the rate and spatial distribution of submarine melting. Focussed subglacial runoff induces rapid but localised melting, while diffuse runoff induces slower but spatially homogeneous melting. Furthermore, for the same subglacial runoff, total ablation by submarine melting from diffuse runoff exceeds that from focussed runoff by at least a factor of five. BPT is then used to examine the relationship between plume-induced submarine melting and key physical parameters, such as plume geometry, fjord stratification, and the magnitude of subglacial runoff. It is shown that submarine melt rate is proportional to the magnitude of subglacial runoff raised to the exponent of 1/3, regardless of plume geometry, provided runoff lies below a critical threshold and the fjord is weakly stratified. Above the runoff threshold and for strongly stratified fjords, the exponent respectively decreases and increases. The obtained relationships are combined into a single parameterisation thereby providing a useful first-order estimate of submarine melt rate with potential for incorporation into predictive ice flow models. Having investigated many of the factors affecting submarine melt rate, this thesis turns to the effect of melting on tidewater glacier dynamics and calving processes. Specifically, feedbacks between submarine melting and calving front shape are evaluated by coupling BPT to a dynamic ice-ocean boundary which evolves according to modelled submarine melt rates. In agreement with observations, the model shows calving fronts becoming undercut by submarine melting, but hints at a critical role for subglacial channels in this process. The total ablation by submarine melting increases with the degree of undercutting due to increased ice-ocean surface area. It is suggested that the relative pace of undercutting versus ice velocity may define the dominant calving style at a tidewater glacier. Finally, comparison of plumes modelled in both MITgcm and BPT with those observed at Kangiata Nunata Sermia (KNS), a large tidewater glacier in south-west Greenland, suggests that subglacial runoff at KNS is often diffuse in nature. In addition to the above implications for submarine melting, diffuse drainage may enhance basal sliding during warmer summers, thereby providing a potential link between increasing atmospheric temperature and tidewater glacier acceleration which does not invoke the role of the ocean. This thesis provides a comprehensive investigation and quantification of the factors affecting submarine melting at tidewater glaciers, a complex process that is believed to be one of the key influences on the current and future stability of the Greenland Ice Sheet. Based on the magnitude of modelled melt rates, and their effect on calving front shape, the process of submarine melting is a likely driver of retreat at slower-flowing tidewater glaciers in Greenland. For melting to influence the largest and fastest-flowing glaciers requires invoking a sensitive coupling between melting and calving which is as yet obscure. It should however be noted that modelled melt rates depend critically on parameters which are poorly constrained. The results and parameterisations developed in this thesis should now be taken forward through testing against field observations - which are currently rare - and, from a modelling perspective, coupling with ice flow models to provide a more complete picture of the interaction of the Greenland Ice Sheet with the ocean.
6

An improvement on the gas transfer velocity model with application to scatterometer data / Uma melhora no modelo de transferência gasosa com aplicação a dados de escaterômetro

Augusto, Fabio Lekecinskas 05 August 2015 (has links)
The increase of carbon dioxide in the atmosphere observed in recent decades is causing the acidification of the oceans besides the global warming. The amount of carbon dioxide that crosses the air-sea interface is not well known because this amount depends upon the partial pressure of carbon dioxide and the gas transfer velocity. The gas transfer velocity is a variable based on Fick\'s Law of Diffusion and is normally parametrized as a function of wind velocity at the height of 10 meters. However, the result of this parametrization have errors greater than 100%. Newer parametrization include the effects of temperature, friction velocity and the presence of surface waves. Based on the simplest model of air-sea gas transfer model, the stagnant film theory, this study developed a methodology to improve the knowledge of the relation between the gas transfer velocity and the mean square slope. This variable accounts for the mean curvature of the waves in the surface. The data used was gathered within the scope of the DOGEE project in 2007. In that, a drifting buoy measured several parameters relative to the waves and the gas transfer velocity. The results show that the mean square slope calculated with waves whose wavenumber is between 40 and 50 radians per meter has the lowest root mean square errors of the regression between the mean square slope and the gas transfer velocity. This result showed to be very consistent when applied to the QuikSCAT scatterometer data and compared to a recent published study. / O aumento da concentração de dióxido de carbono na atmosfera observado nas últimas décadas é responsável por alterações climáticas e ambientais em escala global. Uma das consequências desse aumento da concentração de gás carbônico é o aquecimento global. Outra consequência é a acidificação dos oceanos. Isto ocorre devido ao dióxido de carbono atravessar a interface ar-mar e se dissolver no oceano. A quantidade de dióxido de carbono que atravessa a interface ar-mar é um dado não conhecido com precisão devido a esta quantidade depender de uma constante conhecida por velocidade de transferência do gás carbônico. Esta velocidade de transferência é normalmente uma parametrização do transporte turbulento do gás na interface oceano-atmosfera. Como o dado mais comum para essa parametrização é o vento à altura de 10 metros, muitos estudos foram desenvolvidos utilizando esta variável. No entanto, os resultados destas parametrizações possuem erros da ordem de 100%. Este estudo desenvolveu uma metodologia para obter uma melhor estimativa da velocidade de transferência. Para isto, optou-se por relacionar esta variável à inclinação quadrática média (MSS) das ondas. Segundo a literatura científica recente, o MSS é uma variável mais relacionada à transferência gasosa do que o vento a 10 metros de altura. Os resultados mostram que a inclinação quadrática média calculado com números de onda entre 40 e 50 radianos por metro possuem o menor erro no ajuste linear com os dados de velocidade de transferência. Este resultado indica uma mudança da dinâmica da interface nesse intervalo de número de onda. Com isso, um novo ajuste linear entre o MSS e a velocidade de transferência é sugerido como parametrização. A aplicação desta nova parametrização a dados de satélite do tipo escaterômetro mostrou-se consistente quando comparado a um estudo recente relacionando a velocidade de transferência do gás carbônico diretamente a dados do satélite oceanográfico QuikSCAT.
7

An improvement on the gas transfer velocity model with application to scatterometer data / Uma melhora no modelo de transferência gasosa com aplicação a dados de escaterômetro

Fabio Lekecinskas Augusto 05 August 2015 (has links)
The increase of carbon dioxide in the atmosphere observed in recent decades is causing the acidification of the oceans besides the global warming. The amount of carbon dioxide that crosses the air-sea interface is not well known because this amount depends upon the partial pressure of carbon dioxide and the gas transfer velocity. The gas transfer velocity is a variable based on Fick\'s Law of Diffusion and is normally parametrized as a function of wind velocity at the height of 10 meters. However, the result of this parametrization have errors greater than 100%. Newer parametrization include the effects of temperature, friction velocity and the presence of surface waves. Based on the simplest model of air-sea gas transfer model, the stagnant film theory, this study developed a methodology to improve the knowledge of the relation between the gas transfer velocity and the mean square slope. This variable accounts for the mean curvature of the waves in the surface. The data used was gathered within the scope of the DOGEE project in 2007. In that, a drifting buoy measured several parameters relative to the waves and the gas transfer velocity. The results show that the mean square slope calculated with waves whose wavenumber is between 40 and 50 radians per meter has the lowest root mean square errors of the regression between the mean square slope and the gas transfer velocity. This result showed to be very consistent when applied to the QuikSCAT scatterometer data and compared to a recent published study. / O aumento da concentração de dióxido de carbono na atmosfera observado nas últimas décadas é responsável por alterações climáticas e ambientais em escala global. Uma das consequências desse aumento da concentração de gás carbônico é o aquecimento global. Outra consequência é a acidificação dos oceanos. Isto ocorre devido ao dióxido de carbono atravessar a interface ar-mar e se dissolver no oceano. A quantidade de dióxido de carbono que atravessa a interface ar-mar é um dado não conhecido com precisão devido a esta quantidade depender de uma constante conhecida por velocidade de transferência do gás carbônico. Esta velocidade de transferência é normalmente uma parametrização do transporte turbulento do gás na interface oceano-atmosfera. Como o dado mais comum para essa parametrização é o vento à altura de 10 metros, muitos estudos foram desenvolvidos utilizando esta variável. No entanto, os resultados destas parametrizações possuem erros da ordem de 100%. Este estudo desenvolveu uma metodologia para obter uma melhor estimativa da velocidade de transferência. Para isto, optou-se por relacionar esta variável à inclinação quadrática média (MSS) das ondas. Segundo a literatura científica recente, o MSS é uma variável mais relacionada à transferência gasosa do que o vento a 10 metros de altura. Os resultados mostram que a inclinação quadrática média calculado com números de onda entre 40 e 50 radianos por metro possuem o menor erro no ajuste linear com os dados de velocidade de transferência. Este resultado indica uma mudança da dinâmica da interface nesse intervalo de número de onda. Com isso, um novo ajuste linear entre o MSS e a velocidade de transferência é sugerido como parametrização. A aplicação desta nova parametrização a dados de satélite do tipo escaterômetro mostrou-se consistente quando comparado a um estudo recente relacionando a velocidade de transferência do gás carbônico diretamente a dados do satélite oceanográfico QuikSCAT.
8

A Variable Resolution Global Spectral Method With Finer Resolution Over The Tropics

Janakiraman, S 08 1900 (has links)
Variable resolution method helps to study the local scale phenomenon of interest within the context of global scale atmosphere/ocean dynamics. Global spectral methods based on spherical harmonics as basis functions are known to resolve a given function defined on the sphere, in an uniform manner. Though known for its mathematical elegance and higher order accuracy, global spectral methods are considered to be restrictive for developing mesh-refinement strategies. The only mesh refinement strategy available until now is due to the pioneering work of F. Schmidt. Schmidt transformation can study only one region with higher resolution. The study of tropical dynamics is an interesting theme due to the presence of teleconnections between various phenomena, especially Indian Monsoon and the El-Nino. The Inter-Tropical Convergence Zone (ITCZ)is a continental scale phenamenon. It is in the ITCZ, many monsoon systems and tropical cyclones do occur. To study such phenomena under variable resolution method, high resolution is required in the entire tropical belt. Hitherto such a kind of mesh refinement strategies were not available in global spectral models. In this work, a new variable resolution method is developed that can help to study the tropical sub-scale phenomena with high resolution, in global spectral models. A new conformal coordinate transformation named ’High resolution Tropical Belt Transformation(HTBT)’ is developed to generate high resolution in the entire tropical belt. Mathematical demonstrations are given to show the existence of additional conformal transformations available on the sphere, indicating additional degrees of freedom available to create variable resolution global spectral method. Variable resolution global spectral method with high resolution over tropics is created through HTBT. The restriction imposed by Schmidt’s framework that the map-ping factor of the transformation need to have a finite-decomposition in the spectral space of the transformed domain is relaxed, by introduction of a new framework. The new framework uses transformed spherical harmonics Bnm as basis for spectral computations. With the use of FFT algorithm and Gaussian quadrature, the efficiency of the traditional spectral method is retained with the variable resolution global spectral method. The newly defined basis functions Bnm are the eigenvalues of the transformed Laplacian operator . This property of Bnm provide an elegant direct solver for the transformed Helmholtz operator on the sphere. The transformed Helmholtz equations are solved accurately with the variable resolution method. Advection experiments conducted with variable resolution spectral transport scheme on the HTBT variable grid produces near-dispersion free advection on the tropical belt. Transport across homogeneous resolution regions produce very less dispersion errors. Transport of a feature over the poles result in severe grid representation errors. It is shown that an increase in resolution around the poles greatly reduces this error. Transport of a feature from a point close to poles but not over it, does not produce such representation errors. Fourth-order Runge-Kutta scheme improves the accuracy of the transport scheme. The second order Magazenkov time-scheme proves to be better accurate than the leap-frog scheme with Asselin filter. The non-divergent barotropic vorticity equation is tested with two exact solutions namely Rochas solution and Rossby-Haurwitz wave solutions. Each of the solution tests certain unique and contrasting characteristic of the system. The numerical behaviour of the solutions show non-linear interactions in them. The singularity at the poles, arising due to the unbounded nature of the latitudinal derivative of the map factor of HTBT, triggers Gibbs phenomena for certain functions. However the recent advances in spectral methods, especially spectral viscosity method and Boyd-Vandeven filtering strategy provide ways to control the Gibbs oscillation and recover higher accuracy; make the variable resolution global spectral method viable for accurate meteorological computations.
9

Regional Disaster Events and Environment Simulations by Atmosphere-Ocean Coupled Model / 大気・海洋結合モデルによる地域環境・災害事象シミュレーション / タイキ カイヨウ ケツゴウ モデル ニ ヨル チイキ カンキョウ サイガイ ジショウ シミュレーション

LEE, Han Soo 25 September 2007 (has links)
学位授与大学:京都大学 ; 取得学位: 博士(工学) ; 学位授与年月日: 2007-09-25 ; 学位の種類: 新制・課程博士 ; 学位記番号: 工博第2844号 ; 請求記号: 新制/工/1418 ; 整理番号: 25529 / An atmosphere-ocean coupled model was developed based on a preexisting non-hydrostatic mesoscale atmosphere model (MM5) and non-hydrostatic ocean circulation model (MITgcm). This model together with a pre-established wind-wave-currents coupled model was applied to a number of regional environmental issue and disaster events to reproduce the present status and past situations and to help our understanding of the physical processes of such problems in terms of atmosphere-ocean interactions including the sea surface waves in the interface between air and sea. The disaster events and environmental issue studied in this thesis are follows. 1) Storm surge induced by Hurricane Katrina in the Gulf coast of USA in 2005. 2) Extreme high waves at Hara coast, Suruga Bay in Japan caused by the super-Typhoon TIP in 1979. 3) Positive and negative feedbacks in typhoon-ocean interaction in case of Typhoon ETAU in 2003. 4) Thermal water circulation in a dam-made lake (Yachiyo Lake) in Hiroshima, Japan concerning on the hydrodynamics in the lake. 5) Reanalysis of the past 47 storms that caused disasters in West Kyushu, Japan. 6) Wave overtopping simulation over through the submerged offshore breakwater and enhance seawall. The Regional Environment and Disaster Prevention Simulator is proposed and constructed based on the regional atmosphere-ocean coupled model in this thesis of which the objective was improvement of the numerical assessment method to disaster events and environment problems by introducing he coupling effects between different systems. / Kyoto University (京都大学) / 0048 / 新制・課程博士 / 博士(工学) / 甲第13373号 / 工博第2844号 / 新制||工||1418(附属図書館) / 25529 / UT51-2007-Q774 / 京都大学大学院工学研究科社会基盤工学専攻 / (主査)教授 関口 秀雄, 教授 間瀬 肇, 教授 中北 英一 / 学位規則第4条第1項該当
10

Biennial Oscillation Of Indian Summer Monsoon And Global Surface Climate In The Present Decade

Menon, Arathy 07 1900 (has links)
The ENSO-monsoon system is known to have a biennial component. Here we show using high resolution satellite data, mainly daily rainfall and sea surface temperature (SST) from the Tropical Rainfall Measuring Mission (TRMM), and daily scatterometer surface winds from QuickSCAT, that there is a clear biennial oscillation (TBO) in summer monsoon rainfall over Central India – Bay of Bengal (Cl-BoB) and the far west Pacific in the period 1999-2005. Summer (JJAS) mean rainfall oscillates between high and low values in alternate years; the rainfall is high in the odd years 1999, 2001, 2003, and 2005, and low in even years 2000, 2002 and 2004. The amplitude of the oscillation is significant, as measured against the long term standard deviation of seasonal rain based on 1979-2005 Global Precipitation Climatology Project (GPCP) data. We find that the TBO in rainfall is associated with TBO of SST over the tropical Indian, west Pacific and Atlantic Oceans in different seasons. There is no TBO in east Pacific SST, and no strong El Nino in this period. The TBO of SST is related to change in evaporation due to TBO of surface wind speed. A TBO of the surface branch of the Walker circulation in the eastern Indian and western Pacific basins is clearest in the autumn season during 1999-2005. There is a clear relation between a large-amplitude TBO of winter surface air temperature over north Asia associated with TBO of the Arctic oscillation (AO), and the TBO of summer monsoon rainfall. High rainfall over CI-BoB lin summer is followed by a relatively high value of the AO Index, and warm air termperature over north Asia in the succeeding winter. The Inter Tropical Convergence Zone(ITCZ) over the central Pacific and Atlantic Oceans shift north by about two degrees when the northern hemisphere is warm, reminiscent of the behaviour of the climate system of ENSO, decadal and palaeoclimate time scales. In this thesis we document the biennial oscillation of monsoon rain and its spatial structure in the recent period, and its relation with biennial oscillation of surface climate over the global tropics and extratropical regions. The existence of TBO in the tropical Atlantic, and its relation with the monsoon, is a new finding. We demonstrate that the interannual variability of the summer monsoon during 1999-2005, including the drought of 2002, is part of a pervasive TBO of global surface climate.

Page generated in 0.1434 seconds