• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 23
  • 23
  • 7
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Estudo dos efeitos de variações do vento no sistema de ressurgência ao longo da costa peruana através da análise de dados e modelagem numérica / Study of the wind variation effects in the upwelling system along the Peruvian Coast through data analysis and numerical modeling

Aguirre, Enrique Eduardo Lizardo Huaringa 06 July 2007 (has links)
O presente trabalho teve como finalidade estudar os efeitos das variações do vento resultantes de ocorrências do fenômeno El Niño-Southern Oscillation (ENSO) nos padrões da circulação superficial ao longo da costa peruana, através da análise de dados observados e de modelagem numérica. É enfocado o período 1991-2000, quando ocorreram fortes eventos La Niña (1996-97, 1998-2000) e El Niño (1997- 98). Esses eventos tiveram fortes impactos em escala global mas muito pouco se sabe sobre os impactos locais na estrutura da termoclina e no ciclo da dinâmica de Ekman ao longo da costa peruana. Os dados analisados no presente estudo foram dados coletados em duas radiais ao longo das latitudes 5 S e 15 S. O modelo oceânico utilizado foi o Modelo da Universidade de Princeton (Princeton Ocean Model-POM). As simulações numéricas foram forçadas com produtos de vento relativos ao período 1991-2000. Essas simulações reproduziram satisfatoriamente os padrões médios da circulação na região de estudo, confirmando que nas áreas próximas da costa o vento é o principal mecanismo gerador de ressurgência ou subsidência. Os resultados mostraram que durante a ocorrência do forte evento El Niño 1997-1998, nas radiais de 5 S e 15 S, houve uma drástica alteração do sistema de ressurgência costeira em resposta às variações do vento. / The objective of the present work was to study the effects of variability in the wind due to the El Niño-Southern Oscillation events in the surface circulation patterns of the Peruvian coast, by means of data analysis and numerical modeling. It is focused the period 1991-2000, when it was observed strong La Niña (1996-1997, 1998-2000) and El Niño events (1997-98). These events had strong effects worlwide but very little is known on the local impacts on the circulation, thermocline structure and the Ekman dynamics of the Peruvian coast. The data analysed in the present study were collected on transects along 5 S and 15 S. The model used was an implementation of the Princeton Ocean Model (POM). The numerical simulations were forced with wind products relative to the period of interest (1991-2000). The simulations reproduced satisfactorily the mean circulation patterns in the study area, confirming that the in the nearshore region the wind is the main driving mechanism for coastal upwelling/downwelling. The results show that during the strong 1997-1998 El Niño, a drastic alteration of the coastal upwelling system ocurred in response to the changes in the wind.
12

Lake Tegel: hydrodynamics, pharmaceutical micro-pollutants and management strategies

Schimmelpfennig, Sebastian 21 December 2015 (has links)
Ziele dieser Dissertation sind die Aufklärung der Strömungsverhältnisse und Untersuchungen zum Verhalten von Arzneimittelrückständen im Tegeler See, die Entwicklung eines Simulationsmodells für Szenarioberechnungen sowie die Ableitung neuer Bewirtschaftungskonzepte unter Zuhilfenahme der gewonnenen Erkenntnisse und Modellergebnisse. Das zweidimensionale Strömungsmodell 2D-POM kann die Mischungsverhältnisse der beiden Zuflüsse zum Tegeler See, insbesondere den Einstrom der Oberhavel, ausreichend genau abbilden. Der Oberhaveleinstrom ist sowohl windinduziert als auch vom Abfluss der Oberhavel abhängig. Der Wind wirkt je nach Windrichtung verstärkend oder abschwächend auf den Oberhaveleinstrom. Der Tegeler See weist im Vergleich zu anderen Oberflächengewässern, die als Trinkwasserressource dienen, die höchsten bisher berichteten Gehalte an Arzneimittelrückständen auf. Die räumliche Verteilung von Carbamazepin (CBZ) und Sulfamethoxazol (SMX) wird hauptsächlich durch die Verdünnung mit Oberhavelwasser bestimmt. Nur ein geringer Teil des CBZ (40%) wird im Tegeler See eliminiert. Für SMX konnte keine Elimination festgestellt werden. Im Gegensatz dazu wird Diclofenac (DCF) im Oberflächenwasser photolytisch abgebaut (50% in den Wintermonaten, mehr als 95% im Sommer). Die Konzentrationen von DCF im Tegeler See zeigen deshalb eine hohe saisonale Variabilität. Durch Simulation von sieben Bewirtschaftungsszenarien wurde untersucht, ob mithilfe der existierenden Seeleitung und Phosphateliminierungsanlage die Konzentrationen der Arzneimittelrückstände im Tegeler See verringert werden können, ohne die erfolgreiche Seerestaurierung zu gefährden. In keinem Szenario konnten die Gehalte an Arzneimittelrückständen und Phosphor gleichzeitig auf einem akzeptablen Niveau gehalten werden. Aus diesem Grund sind ergänzende Maßnahmen notwendig, z.B. eine zusätzliche Spurenstoffentfernung im Zulauf des Sees oder eine weitere Phosphorreduzierung in der Oberhavel. / This cumulative thesis aims at (i) understanding the hydrodynamic characteristics of Lake Tegel, (ii) examining the occurrence and fate of pharmaceutical micro-pollutants in the lake, (iii) developing a modeling tool for scenario prediction, and (iv) utilizing the above findings and applying the above modeling tool to create new management strategies for Lake Tegel. The free-surface two-dimensional circulation model 2D-POM serves as an adequate tool for representing the intrusion of River Havel and the mixing intensity of both inflows, as validated by measured data. The calculations indicated that the intrusion of River Havel into Lake Tegel fluctuates with river discharge and wind, both of which can amplify or neutralize the other. Compared to other surface waters also used as drinking water resources, Lake Tegel seams to feature the highest ever reported pharmaceutical concentrations worldwide. The spatial distribution of carbamazepine (CBZ) and sulfamethoxazole (SMX) in the lake was shown to be primarily affected by dilution with water from River Havel rather than by degradation within the lake. By contrast, concentrations of diclofenac (DCL) are affected by both dilution and photodegradation. DCF showed the strongest elimination of all three pharmaceuticals and revealed significant seasonality with 50% elimination in winter and more than 95% in summer. Elimination of CBZ was 40%, while SMX did not degrade at determinable rates. Seven different management scenarios were tested to answer the question of whether the existing lake pipeline could be used to reduce the amount of pharmaceuticals in Lake Tegel without deteriorating the current phosphorus level. No scenario provided a strategy optimal for both pharmaceuticals and phosphorus. Consequently, additional efforts need to be made, such as supplementary pharmaceutical treatment of the inflow originating from the wastewater treatment plant, or phosphorus reduction in the River Havel catchment.
13

Estudo dos efeitos de variações do vento no sistema de ressurgência ao longo da costa peruana através da análise de dados e modelagem numérica / Study of the wind variation effects in the upwelling system along the Peruvian Coast through data analysis and numerical modeling

Enrique Eduardo Lizardo Huaringa Aguirre 06 July 2007 (has links)
O presente trabalho teve como finalidade estudar os efeitos das variações do vento resultantes de ocorrências do fenômeno El Niño-Southern Oscillation (ENSO) nos padrões da circulação superficial ao longo da costa peruana, através da análise de dados observados e de modelagem numérica. É enfocado o período 1991-2000, quando ocorreram fortes eventos La Niña (1996-97, 1998-2000) e El Niño (1997- 98). Esses eventos tiveram fortes impactos em escala global mas muito pouco se sabe sobre os impactos locais na estrutura da termoclina e no ciclo da dinâmica de Ekman ao longo da costa peruana. Os dados analisados no presente estudo foram dados coletados em duas radiais ao longo das latitudes 5 S e 15 S. O modelo oceânico utilizado foi o Modelo da Universidade de Princeton (Princeton Ocean Model-POM). As simulações numéricas foram forçadas com produtos de vento relativos ao período 1991-2000. Essas simulações reproduziram satisfatoriamente os padrões médios da circulação na região de estudo, confirmando que nas áreas próximas da costa o vento é o principal mecanismo gerador de ressurgência ou subsidência. Os resultados mostraram que durante a ocorrência do forte evento El Niño 1997-1998, nas radiais de 5 S e 15 S, houve uma drástica alteração do sistema de ressurgência costeira em resposta às variações do vento. / The objective of the present work was to study the effects of variability in the wind due to the El Niño-Southern Oscillation events in the surface circulation patterns of the Peruvian coast, by means of data analysis and numerical modeling. It is focused the period 1991-2000, when it was observed strong La Niña (1996-1997, 1998-2000) and El Niño events (1997-98). These events had strong effects worlwide but very little is known on the local impacts on the circulation, thermocline structure and the Ekman dynamics of the Peruvian coast. The data analysed in the present study were collected on transects along 5 S and 15 S. The model used was an implementation of the Princeton Ocean Model (POM). The numerical simulations were forced with wind products relative to the period of interest (1991-2000). The simulations reproduced satisfactorily the mean circulation patterns in the study area, confirming that the in the nearshore region the wind is the main driving mechanism for coastal upwelling/downwelling. The results show that during the strong 1997-1998 El Niño, a drastic alteration of the coastal upwelling system ocurred in response to the changes in the wind.
14

Parameterization of the Light Models in Various General Ocean Circulation Models for shallow waters

Warrior, Hari 19 March 2004 (has links)
Solar energy is incident on the earth's surface in both short-wave and long-wave parts of the spectrum. The short-wave part of the spectrum is of special interest to oceanographers since the vertical distribution of temperature in the top layer of the ocean is mostly determined by the vertical attenuation of short-wave radiation. There are numerous studies regarding the temperature evolution as a function of time (see Chapter 2 for details). The diurnal and seasonal variation of the heat content (and hence temperature) of the ocean is explored in this thesis. The basis for such heat budget simulation lies in the fact that the heat budget is the primary driver of ocean currents (maybe secondary to wind effects) and these circulation features affect the biological and chemical effects of that region. The vertical attenuation of light (classified to be in the 300-700 nm range) in the top layer of the ocean has been parameterized by several authors. Simpson and Dickey (1981) in their paper have listed the various attenuation schemes in use till then. This includes a single-exponential form, a bimodal exponential form, and a spectral decomposition into nine spectral bands, each with their specific exponential functions with depth. The effects of vertical light attenuation have been investigated by integrating the light models into a 1D and a 3D turbulence closure model. The main part of the thesis is the inclusion of a bottom effect in the shallow waters. Bottom serves two purposes, it reflects some light based on its albedo and it radiates the rest of the light as heat. 1-D simulation including bottom effects clearly indicates the effect of light on the temperature profile and also the corresponding effect on salinity profiles. An extension of the study includes a 3D simulation of the heat budget and the associated circulation and hydrodynamics. Intense heating due to the bottom leads to the formation of hyper-saline waters that percolate down to depths of 50 m in the summer. Such plumes have been simulated by using a 3D numerical ocean model and it is consistent with observations from the Bahamas banks.
15

Model error space and data assimilation in the Mediterranean Sea and nested grids / Espace d'erreur et assimilation de données dans un modèle de la Mer Mediterranée et des grilles gigognes.

Vandenbulcke, Luc 11 June 2007 (has links)
In this work, we implemented the GHER hydrodynamic model in the Gulf of Lions (resolution 1/100°). This model is nested interactively in another model covering the North-Western basin of the Mediterranean Sea (resolution 1/20°), itself nested in a model covering the whole basin (1/4°). A data assimilation filter, called the SEEK filter, is used to test in which of those grids observations taken in the Gulf of Lions are best assimilated. Therefore, twin experiments are used: a reference run is considered as the truth, and another run, starting from different initial conditions, assimilates pseudo-observations coming from the reference run. It appeared that, in order to best constrain the coastal model, available data should be assimilated in that model. The most efficient setup, however, is to group all the state vectors from the 3 grids into a single vector, and hence coherently modify the 3 domains at once during assimilation cycles. Operational forecasting with nested models often only uses so-called passive nesting: no data feedback happens from the regional models to the global model. We propose a new idea: to use data assimilation as a substitute for the feedback. Using again twin experiments, we show that when assimilating outputs from the regional model in the global model, this has benecial impacts for the subsequent forecasts in the regional model. The data assimilation method used in those experiments corrects errors in the models using only some privileged directions in the state space. Furthermore, these directions are selected from a previous model run. This is a weakness of the method when real observations are available. We tried to build new directions of the state space using an ensemble run, this time covering only the Mediterranean basin (without grid nesting). This led to a quantitative characterization of the forecast errors we might expect when various parameters and external forcings are affected by uncertainties. Finally, using these new directions, we tried to build a statistical model supposed to simulate the hydrodynamical model using only a fraction of the computer resources needed by the latter. To achieve this goal, we tried out artifficial neural networks, nearest-neighbor and regression trees. This study constitutes only the first step toward an innovative statistical model, as in its present form, only a few degrees of freedom are considered and the primitive equation model is still required to build the AL method. We tried forecasting at 2 different time horizons: one day and one week.
16

Modelling large scale ocean circulation : the role of mixing location and meridional pressure gradients for the Atlantic overturning dynamics

Griesel, Alexa January 2005 (has links)
Due to its relevance for global climate, the realistic representation of the Atlantic meridional overturning circulation (AMOC) in ocean models is a key task.<br> In recent years, two paradigms have evolved around what are its driving mechanisms: diapycnal mixing and Southern Ocean winds. This work aims at clarifying what sets the strength of the Atlantic overturning components in an ocean general circulation model and discusses the role of spatially inhomogeneous mixing, numerical diffusion and winds. Furthermore, the relation of the AMOC with a key quantity, the meridional pressure difference is analyzed. <br><br> Due to the application of a very low diffusive tracer advection scheme, a realistic Atlantic overturning circulation can be obtained that is purely wind driven.<br> On top of the winddriven circulation, changes of density gradients are caused by increasing the parameterized eddy diffusion in the North Atlantic and Southern Ocean. The linear relation between the maximum of the Atlantic overturning and the meridional pressure difference found in previous studies is confirmed and it is shown to be due to one significant pressure gradient between the average pressure over high latitude deep water formation regions and a relatively uniform pressure between 30°N and 30°S, which can directly be related to a zonal flow through geostrophy. Under constant Southern Ocean windstress forcing, a South Atlantic outflow in the range of 6-16 Sv is obtained for a large variety of experiments. Overall, the circulation is winddriven but its strength not uniquely determined by the Southern Ocean windstress. <br><br> The scaling of the Atlantic overturning components is linear with the background vertical diffusivity, not confirming the 2/3 power law for one-hemisphere models without wind forcing. The pycnocline depth is constant in the coarse resolution model with large vertical grid extends. It suggests the ocean model operates like the Stommel box model with a linear relation of the pressure difference and fixed vertical scale for the volume transport. However, this seems only valid for vertical diffusivities smaller 0.4 cm²/s, when the dominant upwelling within the Atlantic occurs along the boundaries. For larger vertical diffusivities, a significant amount of interior upwelling occurs. It is further shown that any localized vertical mixing in the deep to bottom ocean cannot drive an Atlantic overturning. However, enhanced boundary mixing at thermocline depths is potentially important. <br><br> The numerical diffusion is shown to have a large impact on the representation of the Atlantic overturning in the model. While the horizontal numerical diffusion tends to destabilize the Atlantic overturning the verital numerical diffusion denotes an amplifying mechanism. / Wegen ihrer Bedeutung für das globale Klima ist die realistische Darstellung des Atlantischen meridionalen overturnings in Ozeanmodellen eine zentrale Aufgabe.<br> In den letzten Jahren haben sich zwei verschiedene Hypothesen darüber entwickelt, was diese Zirkulation antreibt: diapyknische Vermischung und Winde im südlichen Ozean.<br> Die vorliegende Arbeit zielt darauf aufzuklären, welche Rolle eine räumlich inhomogene Verteilung der Vermischung, die numerische Diffusion und Winde beim Bestimmen der Stärke des Atlantischen overturnings spielen. Ausserdem wird die Beziehung des Atlantischen overturnings zu meridionalen Druckgradienten untersucht. <br><br> Durch Anwenden eines sehr gering diffusiven Tracer-Advektionsschemas kann eine realistische Zirkulation erzeugt werden, die rein von den Winden im südlichen Ozean getrieben wird. Ausgehend von der windgetriebenen Zirkulation werden Änderungen der Dichtegradienten durch Verstärkung der parametrisierten Eddy Diffusion im Nordatlantik und südlichen Ozean hervorgerufen. Dadurch wird das Bild einer vom Wind bestimmten Zirkulation in der letztendlich Druckgradienten nicht ausschlaggebend sein würden, modifiziert. Das lineare Verhältnis zwischen dem Maximum des Atlantischen overturnings und dem meridionalen Druckgradienten wird bestätigt und erklärt. Diese Linearität ist auf einen signifikanten Druckgradienten zwischen den Tiefenwasserbildungsgebieten und einem zwischen 30°N and 30°S homogenen Druck zurückzuführen. Der Volumentransport bei 30°S variiert über eine Bandbreite von 10 Sv für verschiedene Experimente unter konstantem Wind über dem südlichen Ozean. Zusammenfassend ist die Zirkulation zwar windgetrieben aber ihre Stärke nicht allein vom Wind bestimmt. <br><br> Die Skalierung des Atlantischen overturnings ist linear mit vertikaler Vermischung, was die Skalierung mit einem Exponenten von 2/3 in ein-hemisphärischen Modellen ohne Wind-Antrieb nicht bestätigt. Die Tiefe der Pyknokline bleibt mit der groben vertikalen Auflösung konstant. Die Ergebnisse deuten darauf hin, dass das Ozeanmodell sich wie das Stommel-Box Modell verhält mit einer linearen Beziehung zum meridionalen Druckgradienten und einer festen vertikalen Skala für den Volumentransport. Das scheint jedoch nur für Diffusivitäten kleiner als 0.4 cm²/s zu gelten, wenn das Aufsteigen im Atlantischen Ozean bevorzugt an den Ozeanrändern statt findet. <br><br> In Bezug auf den Antrieb des Atlantischen overturnings wird gezeigt, dass vertikale Vermischung in der Nähe des Ozeanbodens keinen Einfluss hat. Verstärkte vertikale Vermischung an den Ozeanrändern in der Tiefe der Thermokline jedoch ist potentiell wichtig. <br><br> Die numerische Diffusion hat einen grossen Einfluss auf das Atlantische overturning im Modell. Während die horizontale numerische Diffusion das overturning eher zu destabilisieren tendiert, bewirkt die vertikale numerische Diffusion einen Verstärkungsmechanismus.
17

Koncept značek v politickém prostředí - Případová studie Andreje Babiše / Brand concept in Politics - Andrej Babis Case Study

Mádlová, Andrea January 2015 (has links)
This thesis examines the branding concept in politics and its main aim is to analyze the brand of Andrej Babis, who is nowadays the leader of political party ANO 2011. The author analyzes his brand personality in a first place. For this purpose OCEAN model created by Gerard Saucier is applied. After that the connection between brand ANO and Babis's brand is examined. The research is based on answers of 454 respondents, who were part of the survey. The results are analyzed from two points of view. One group of voters are those who gave their vote to ANO 2011 and the other group is presented by voters of others political parties.
18

Data Assimilation Experiments Using An Indian Ocean General Circulation Model

Aneesh, C S 08 1900 (has links)
Today, ocean modeling is fast developing as a versatile tool for the study of earth’s climate, local marine ecosystems and coastal engineering applications. Though the field of ocean modeling began in the early 1950s along with the development of climate models and primitive computers, even today, the state-of-the-art ocean models have their own limitations. Many issues still remain such as the uncertainity in the parameterisation of essential processes that occur on spatial and temporal scales smaller than that can be resolved in model calculations, atmospheric forcing of the ocean and the boundary and initial conditions. The advent of data assimilation into ocean modeling has heralded a new era in the field of ocean modeling and oceanic sciences. “Data assimilation” is a methodology in which observations are used to improve the forecasting skill of operational meteorological models. The study in the present thesis mainly focuses on obtaining a four dimensional realization (the spatial description coupled with the time evolution) of the oceanic flow that is simultaneously consistent with the observational evidence and with the dynamical equations of motion and to provide initial conditions for predictions of oceanic circulation and tracer distribution. A good implementation of data assimilation can be achieved with the availability of large number of good quality observations of the oceanic fields as both synoptic and in-situ data. With the technology in satellite oceanography and insitu measurements advancing by leaps over the past two decades, good synoptic and insitu observations of oceanic fields have been achieved. The current and expected explosion in remotely sensed and insitu measured oceanographic data is ushering a new age of ocean modeling and data assimilation. The thesis presents results of analysis of the impact of data assimilation in an ocean general circulation model of the North Indian Ocean. In this thesis we have studied the impact of assimilation of temperature and salinity profiles from Argo floats and Sea Surface height anomalies from satellite altimeters in a Sigma-coordinate Indian Ocean model. An ocean data assimilation system based on the Regional Ocean Modeling System (ROMS) for the Indian Ocean is used. This model is implemented, validated and applied in a climatological simulation experiment to study the circulation in the Indian Ocean. The validated model is then used for the implementation of the data assimilation system for the Indian Ocean region. This dissertation presents the qualitative and quantitative comparisons of the model simulations with and without subsurface temperature and salinity profiles and sea surface height anamoly data assimilation for the Indian Ocean region. This is the first ever reported data assimilation studies of the Argo subsurface temperature and salinity profile data with ROMS in the Indian Ocean region.
19

Examination of the Barotropic Behavior of the Princeton Coastal Ocean Model in Lake Erie, Using Water Elevations From Gage Stations and Topex/Poseidon Altimeters

Velissariou, Vasilia 30 September 2009 (has links)
No description available.
20

Implementation and Analysis of Air-Sea Exchange Processes in Atmosphere and Ocean Modelling

Carlsson, Björn January 2008 (has links)
To understand and to predict the weather and climate, numerical models are important tools and it is crucial that the controlling processes are described correctly. Since 70% of the global surface is covered with water the description how the ocean and atmosphere communicates has a considerable impact. The ocean–atmosphere exchange occurs through transport of momentum (friction) and heat, governed by turbulent eddies. The sea surface is also an important source of turbulence in both directions. The scales of the turbulent eddies cannot be resolved in ocean and climate models. Therefore, the turbulent exchanges have to be related to mean variables, such as wind speed and temperature differences. By using measurements, new methods to describe the air–sea exchange during two specific processes were developed. These processes are the so-called UVCN-regime (Unstable Very Close to Neutral stratification) and swell, i.e. waves which are not produced by the local wind. These processes were included in an ocean model and in a regional atmospheric climate model and the impact was investigated. The UVCN-regime enhances the heat transport significantly during the autumn and winter months in the ocean model. This results in a shallower well-mixed surface layer in the ocean. Wind-following swell reduces the surface friction, which is very important for the atmosphere. Some secondary effects in the climate model are reduced low-level cloud cover and reduced precipitation by more than 10% over sea areas. Locally and for short periods the impact is large. It is important to include the UVCN-regime and the swell impact in models, to make simulations more reliable.

Page generated in 0.1116 seconds