• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 631
  • 7
  • 6
  • 1
  • 1
  • 1
  • Tagged with
  • 654
  • 568
  • 566
  • 566
  • 548
  • 548
  • 448
  • 374
  • 322
  • 318
  • 316
  • 316
  • 313
  • 295
  • 286
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
321

Ecology and population structure of vibrionaceae in the coastal ocean

Preheim, Sarah Pacocha January 2010 (has links)
Thesis (Ph.D.)--Joint Program in Oceanography (Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering; and the Woods Hole Oceanographic Institution), 2010. / Cataloged from PDF version of thesis. / Includes bibliographical references. / Extensive genetic diversity has been discovered in the microbial world, yet mechanisms that shape and maintain this diversity remain poorly understood. This thesis investigates to what extent populations of the gamma-proteobacterial family, Vibrionaceae, are ecologically specialized by investigating the distribution across a wide range of environmental categories, such as marine invertebrates or particles in the water column. Additionally, it seeks to determine whether in situ population distributions directly result from a competitive advantage over other Vibrio populations. This was investigated by in vitro competition assays on mixtures of native, sterilized particles. Generalist populations were found to dominate the associations with marine invertebrates, consistent with a model of high migration dominated population assembly. A majority of populations occurred broadly within and among the different types of invertebrates sampled, with one population being a near perfect generalist with regard to seasons, host taxa and body regions. High variability across host individuals, consistent with a scenario of stochastic clonal expansion, was especially pronounced in crab and zooplankton samples. Specialization, demonstrated by specific and reproducible association with different particle types in the water column, is more common than specialization within invertebrate hosts. / (cont.) Co-existing Vibrio species show strong preferences for different types of particulate matter in the water column suggesting that competition for limited resources influences their evolution. While populations show different growth profiles on particle derived substrates, relative growth advantages of specialist populations in competition with other Vibrio populations on native particles may not be sufficient to explain observed environmental distributions. Instead, populations may gain an advantage on these particles by colonizing the living plant or zooplankton prior to death and degradation into particulate matter. In summary, although vibrios are known commensals of marine invertebrates, evidence suggests that population structure within animals is fairly weak compared to suspended particles in the water column. This highlights the importance of comparing multiple environmental categories and migration among them to investigate population structure and adaptation. / by Sarah Pacocha Preheim. / Ph.D.
322

Global isotopic signatures of oceanic island basalts / by

Oschmann, Lynn A January 1991 (has links)
Thesis (Ph. D.)--Joint Program in Oceanography (Massachusetts Institute of Technology, Dept. of Ocean Engineering; and the Woods Hole Oceanographic Institution), 1991. / Includes bibliographical references (p. 247-253). / Sr, Nd and Pb isotopic analyses of 477 samples representing 30 islands or island groups, 3 seamounts or seamount chains, 2 oceanic ridges and 1 oceanic plateau [for a total of 36 geographic features] are compiled to form a comprehensive oceanic island basalt [OIB] data set. These samples are supplemented by 90 selected mid-ocean ridge basalt [MORB] samples to give adequate representation to MORB as an oceanic basalt end-member. This comprehensive data set is used to infer information about the Earth's mantle. Principal component analysis of the OIB+MORB data set shows that the first three principal components account for 97.5% of the variance of the data. Thus, only four mantle end-member components [EMI, EMII, HIMU and DMM I are required to completely encompass the range of known isotopic values. Each sample is expressed in terms of percentages of the four mantle components, assuming linear mixing. There is significant correlation between location and isotopic signature within geographic features, but not between them, so discrimination analysis of the viability of separating the oceanic islands into those lying inside and outside Hart's (1984, 1988) DUPAL belt is performed on the feature level and yields positive results. A "continuous layer model" is applied to the mantle component percentage data to solve for the spherical harmonic coefficients using approximation methods. Only the degrees 0-5 coefficients can be solved for since there are only 36 features. The EMI and HIMU percentage data sets must be filtered to avoid aliasing. Due to the nature of the data, the coefficients must be solved for using singular value decomposition [SVD], versus the least squares method. The F-test provides an objective way to estimate the number of singular values to retain when solving with SVD. With respect to the behavior of geophysics control data sets, only the degree 2 spherical harmonic coefficients for the mantle components can be estimated with a reasonable level of confidence with this method. Applying a "delta-function model" removes the problem of aliasing and simplifies the spherical harmonic coefficient solutions from integration on the globe to summation over the geographic features due to the properties of deltafunctions. With respect to the behavior of geophysics control data sets, at least the degree 2 spherical harmonic coefficients for the mantle components can be estimated with confidence, if not the degrees 3 and 4 as well. Delta-function model solutions are, to some extent, controlled by the nonuniform feature distribution, while the continuous layer model solutions are not. The mantle component amplitude spectra, for both models, show power at all degrees, with no one degree dominating. The DUPAL components [EMI, EMII and HIMU], for both models, correlate well with the degree 2 geoid, indicating a deep origin for the components since the degrees 2-3 geoid is inferred to result from topography at the core-mantle boundary. The DUPAL and DMM components, for both models, correlate well [and negatively] at degree 3 with the velocity anomalies of the Clayton-Comer seismic tomography model in the 2500-2900 km depth range [immediately above the core mantle boundary]. The EMII component correlates well [and positively] at degree 5 with the velocity anomalies of the Clayton-Comer model in the 700-1290 km depth range, indicating a subduction related origin. Similar positive correlations for the geoid in the upper lower mantle indicate that subducted slabs extend beyond the 670 km seismic discontinuity and support a whole-mantle convection model. / Lynn A. Oschmann. / Ph.D.
323

Structure and evolution of an oceanic megamullion on the Mid-Atlantic ridge at 27N̊

McKnight, Amy R. (Amy Ruth), 1975- January 2001 (has links)
Thesis (S.M.)--Joint Program in Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences and the Woods Hole Oceanographic Institution), 2001. / Includes bibliographical references (leaves 44-48). / Megamullions in slow-spreading oceanic crust are characterized by smooth "turtle-back" morphology and are interpreted to be rotated footwalls of long-lived detachment faults. Megamullions have been analyzed in preliminary studies, but many questions remain about structural and tectonic details of their formation, in particular how the hanging wall develops in conjugate crust on the opposing side of the rift axis. This study compares the structure of an off-axis megamullion complex and its conjugate hanging wall crust on the Mid-Atlantic Ridge near 27 0N. Two megamullion complexes, an older (Ml) and younger (M2), formed successively on the west side of the rift axis in approximately the same location within one spreading segment. Megamullion M1 formed while the spreading segment had only one inside comer on the west flank, and megamullion M2 formed after the segment developed double inside corners west of the axis and double outside corners east of the axis. The older megamullion formed between -22.3 and -20.4 Ma, and the younger megamullion formed between -20.6 and -18.3 Ma; they are presently -200-300 km off-axis. Reconstruction poles of plate rotation were derived and plate reconstructions were made for periods prior to initiation of the megamullion complex (anomaly 6Ar, -22.6 Ma), after the termination of megamullion Ml and during the development of megamullion M2 (anomaly 5E, -19 9 Ma), and shortly following the termination of megamullion M2 (anomaly 5C, -17.6 Ma). These reconstructions were used to compare morphological and geophysical features of both flanks at each stage of the megamullions' development. Megamullion Ml's breakaway occurred at -22.3 Ma and slip along this detachment fault continued and propagated northward at -20.6 Ma to form the northern portion of M2. The exhumed footwall of megamullion M1 has weak spreading-parallel lineations interpreted as mullion structures on its surface, and it forms an elevated plateau between the enclosing segment boundaries (non-transform discontinuities). There was an expansion southward of the detachment fault forming megamullion M2 at -20.1 Ma. It either cut a new detachment fault through megamullion Ml, stranding a piece of megamullion Ml on the conjugate side (east flank), or it linked into the active detachment fault that was forming megamullion M1 or propagated into its hanging wall. The expanded detachment of megamullion M2 and the termination of megamullion M1 occurred during a time when the enclosing spreading segment roughly doubled in length and formed two inside corners. Megamullion M2 developed prominent, high-amplitude (-600 m) mullion structures that parallel the spreading direction for more than 20 km at each inside corner. Its detachment fault was abandoned - 18.6 Ma in the south and ~18.3 Ma in the north ... / by Amy R. McKnight. / S.M.
324

Monthly variability in upper ocean biogeochemistry due to mesoscale eddy activity in the Saragasso Sea

Sweeney, Erin N. (Erin Nicole), 1971- January 2001 (has links)
Thesis (S.M.)--Joint Program in Chemical Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences and the Woods Hole Oceanographic Institution), 2001. / Includes bibliographical references (leaves 65-72). / A comparison of monthly biogeochemical measurements made from 1993 to 1995, combined with hydrography and satellite altimetry, was used to observe the impacts of nine eddy events on primary productivity and particle flux in the Sargasso Sea. Measurements of primary production, thorium-234 flux, nitrate+nitrite, and photosynthetic pigments made at the US JGOFS Bermuda Atlantic Time-series Study (BATS) site were used. During the three years of this study, four out of six high thorium- 234 flux events over 1000 dpm/m 2/d occurred during the passage of an eddy. Primary production nearly as high as the spring bloom maximum was observed in two modewater eddies (May 1993 and July 1995). The 1994 spring bloom at BATS was suppressed by the passage of an anticyclone. Distinct phytoplankton community shifts were observed in mode-water eddies, which had an increased percentage diatoms and dinoflagelletes, and in cyclones, which had an increased percentage cyanobacteria (excluding Prochlorococcus). The difference in the observations of mode-water eddies and cyclones may result from the age of the eddy, which was very important to the biological response. In general, eddies that were one to two months old elicited a large biological response; eddies that were three months old may show a biological response and were accompanied by high thorium flux measurements; eddies that were four months old or older did not show a biological response or high thorium flux. Our conceptual model depicting the importance of temporal changes during eddy upwelling and decay fit the observations well in all 7 upwelling eddies. Additional information is needed to determine the importance of deeper mixed layers and winter mixing to the magnitude of the eddy impacts. Also, sampling generally captured only the beginning, end, and /or edge of an eddy due to the monthly to semi-monthly frequency of the measurements made at BATS. Lagrangian studies, higher resolution time-series, and/or more spatial coverage is needed to provide additional information for improved C and N budgets in the Sargasso Sea and to complete our understanding of the temporal changes that occur in an eddy. / by Erin N. Sweeney. / S.M.
325

Radium isotopes as tracers of coastal circulation pathways in the Mid-Atlantic Blight

Rasmussen, Linda L January 2003 (has links)
Thesis (Ph. D.)--Joint Program in Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences, and the Woods Hole Oceanographic Institution), 2003. / Includes bibliographical references (leaves 205-214). / Pathways of exchange between the shelf and slope in the Mid-Atlantic Bight were investigated using a combination of radiochemical tracer and hydrographic measurements. The motivation was to provide evidence of transport routes for shelfwater that could be important to the balance of shelf-slope exchange, as well as to the biogeochemical fluxes across this crucial ocean boundary. The four radium isotopes, with half-lives of 4 days to 1600 years, a coastal source, and conservative properties in seawater, were used as coastal water mass tracers. The final study was comprised of data from 5 cruises, with a total of 8 cross-shelfbreak transects. Two areas were studied, a northern Mid-Atlantic Bight transect south of Nantucket Shoals, and a southern Mid-Atlantic Bight series of transects off the coast of Delaware. In addition, data were collected from the shelfbreak at Cape Hatteras crossing the western wall of the Gulf Stream to help determine sources of anomalous 224Ra enrichment which was observed on several of the shelfbreak transects. Combined with the hydrographic data, radium measurements suggested a pathway for exchange in the Mid-Atlantic Bight that was not a direct advection of shelf water toward the slope. Rather, the evidence suggested limited direct exchange of surface shelf water across the shelfbreak front. This provides observational evidence that is consistent with models (e.g., Gawarkiewicz and Chapman, 1991) which predict the shelfbreak front will impede exchange. Furthermore, 224Ra activity on the upper slope points to a rapid transport pathway for bottom water from the Cape Hatteras shelf via the Gulf Stream onto the Mid-Atlantic Bight slope. The radiochemical and hydrographic evidence suggests that recirculation around the slope sea gyre may be a more important pathway than direct cross-shelf transport. / by Linda L. Rasmussen. / Ph.D.
326

Interactions of cadmium, zinc, and phosphorus in marine Synechococcus : field uptake, physiological and proteomic studies

Cox, Alysia Danielle January 2011 (has links)
Thesis (Ph. D.)--Joint Program in Chemical Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2011. / Cataloged from PDF version of thesis. / Includes bibliographical references. / A combination of uptake field studies on natural phytoplankton assemblages and laboratory proteomic and physiological experiments on cyanobacterial isolates were conducted investigating the interactions of cadmium (Cd), zinc (Zn), and phosphorus (P) in marine Synechococcus. Enriched stable isotope field uptake studies of ¹¹⁰CD in the Costa Rica Upwelling dome, a Synechococcus feature, showed that uptake of Cd occurs in waters shallower than 40 m, correlates positively with chlorophyll a concentrations and is roughly equivalent to the calculated upwelling flux of cadmium inside the dome. In laboratory experiments, Synechococcus WH5701 cells exposed to low picomolar quantities of free Cd under Zn deficiency show similar growth rates to no added Cd treatments during exponential growth phase, but show differences in relative abundances of many proteins involved in carbon and sulfur metabolism suggesting a great metabolic impact. During stationary phase, chronic Cd exposure in this coastal isolate causes an increase in relative chlorophyll a fluorescence and faster mortality rates. The interactions of acute Cd exposure at low picomolar levels with Zn and phosphate (PO4³-) were investigated in Synechococcus WH8102, an open ocean isolate. The presence of Zn appears vital to the response of the organism to different PO4 ³- cocentrations. Comparisons with literature transcriptome analyses of PO4 ³- stress show similar increases in relative abundance of PO4 ³- stress response proteins including a PO4 ³- binding protein and a Zn-requiring alkaline phosphatase. A bacterial metallothionein, a Zn-associated protein, appears to be correlated with proteins present under low PO4 conditions. Together, these experiments suggest that the interactions of Cd and Zn can affect Synechococcus and play a role in the acquisition of PO4 ³-. / by Alysia Danielle Cox. / Ph.D.
327

Application of Seasat altimetry to tectonic studies of fracture zones in the Southern oceans / Seasat altimetry to tectonic studies of fracture zones in the Southern oceans, Application of

Driscoll, Mavis Lynn January 1987 (has links)
Thesis (Ph. D.)--Joint Program in Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 1987. / Vita. / Includes bibliographical references. / Gravity derived from Seasat altimetry has provided a means of estimating seafloor topography and its compensation, which in turn can be used to understand the evolution of oceanic lithosphere. In the first study, the correlation between the geoid, deflection of the vertical, and seafloor topography is investigated along a section of the Southwest Indian Ridge. Geoid anomalies computed from a simple thermal model fairly accurately predict the intermediate-wavelength anomalies across the fracture zones. The shorter wavelength anomalies are consistent with those calculated from topography using elastic plate compensation. The combined effect of the thermal offset and seafloor topography produces an anomaly which has a small-amplitude, short-wavelength depression directly over the fracture zone valley. Pronounced lineations in the horizontal geoid gradient do not coincide with the valley but have trends parallel to the fracture zones. In the second study, fracture zones along the Southwest Indian Ridge are identified using altimeter profiles and bathymetry. Finite poles of rotation are determined from the fracture zone locations and magnetic anomaly lineations for anomalies 6 (20 Ma), 13 (37 Ma), and 20 (45 Ma). The new poles are in general agreement with previously published poles and describe a fairly consistent direction of relative motion between Africa and Antarctica for the past 45 Myr. A present-day pole of rotation calculated from transform fault azimuths determined primarily from their geoid anomalies, agrees with published poles based on bathymetric data. In the third study, the rate of change of the geoid with age has been estimated as a function of age from geoid offsets across the Eltanin and Udintsev fracture zones and used to constrain thermal models of lithospheric cooling. Observed trends in the geoid slope versus age plots are similar on both branches of the Eltanin and the east limb of the Udintsev fracture zone. The similarity in trends argues against the effects of isolated thermal or bathymetric anomalies and appears instead to reflect a general feature of the geoid-slope versus average age relationship across fracture zones. Although the thermal plate cooling model is successful in predicting both seafloor depths and heat flow values out to ages of at least 80 m.y. B.P., it cannot explain the observed geoid slope values for these two fracture zones. It is not clear at this point whether this is due to inadequacies in the cooling model or to peculiarities in fracture zone evolution. / by Mavis Lynn Driscoll. / Ph.D.
328

Late Holocene hurricane activity and climate variability in the Northeastern Gulf of Mexico

Lane, Daniel Philip January 2011 (has links)
Thesis (Ph. D. in Geology and Geophysics)--Joint Program in Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2011. / This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. / Cataloged from PDF version of thesis. / Includes bibliographical references. / Hurricane activity in the Northeastern Gulf of Mexico and its relationship to regional and large-scale climate variability during the Late Holocene is explored. A 4500-year record of hurricane-induced storm surges is developed from sediment cores collected from a coastal sinkhole near Apalachee Bay, Florida. Reconstructed hurricane frequency is shown to exhibit statistically significant variability with the greatest activity occurring between 2700 and 2400 years ago and the least activity between 1900 to 1600 years ago and after 600 years ago. Proxy records of storm-relevant climate variables contain similar timescales of variability and suggest both regional and large-scale mechanisms have influenced hurricane activity on centennial to millennial timescales. In particular, low-frequency migrations of the Loop Current may exercise control over regional hurricane activity by changing the thermal structure of the upper ocean and influencing the role of storm-induced upwelling on hurricane intensification. A new method for estimating the frequency of hurricane-generated storm surges is presented and applied to Apalachee Bay, Florida. Multisite paleohurricane reconstructions from this region are developed, and the effects of geographic boundary conditions and temporal resolution on estimates of paleohurricane frequency are explored. / by Daniel Philip Lane. / Ph.D.in Geology and Geophysics
329

Transformations of mercury in the marine water column / Transformations of Hg in the marine water column

Munson, Kathleen M. (Kathleen May) January 2014 (has links)
Thesis: Ph. D., Joint Program in Oceanography (Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2014. / Cataloged from PDF version of thesis. / Includes bibliographical references. / Methylation of mercury (Hg) in the marine water column has been hypothesized to serve as the primary source of the bioaccumulating chemical species monomethylmercury (MMHg) to marine food webs. Despite decades of research describing mercury methylation in anoxic sediments by anaerobic bacteria, mechanistic studies of water column methylation are severely limited. These essential studies have faced analytical challenges associated with quantifying femtomolar concentrations of the methylated Hg species dimethylmercury (DMHg) and MMHg in marine systems. In addition, the complex biogeochemical cycling of Hg in natural systems require consideration of gaseous, dissolved, and particulate species of Hg in order to probe potential controls on its ultimate transfer into marine food webs. The presented work provides a comprehensive study of Hg chemical speciation and transformations in Tropical Pacific waters. We developed an analytical method for MMHg determination from seawater that has the potential to ease measurements of MMHg distributions, as well as mechanistic studies of Hg species transformations. We used this method, in addition to previously established methods, to measure dissolved and particulate Hg species distributions and fluxes along a transect of the Pacific Ocean. Over significant gradients in oxygen utilization and primary productivity, we observed a region of methylated Hg species focused in the Equatorial Pacific that appeared spatially separated from higher concentrations in North Pacific Intermediate Waters. From the first full water column depth profiles of this region, we also observed the intrusion of elevated Hg into deep waters of the Equatorial and South Pacific Ocean. In addition we observed substantial potential rates of mercury methylation in subsurface and low oxygen waters along the Pacific transect as well as the Sargasso Sea using Hg isotope tracers. We observed dynamic production and decomposition of methylated Hg in low productivity waters, despite low ambient methylated Hg concentrations. From the addition of bulk organic matter as well as individual compounds important for methylation in anaerobic bacteria, we observe no simple limitation of Hg methylation in marine waters but highly dynamic conversion of Hg between methylated and inorganic species. / by Kathleen M. Munson. / Ph. D.
330

Slip on ridge transform faults : insights from earthquakes and laboratory experiments / Slip on RTFs : insights from earthquakes and laboratory experiments

Boettcher, Margaret S January 2005 (has links)
Thesis (Ph. D.)--Joint Program in Oceanography (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences; and the Woods Hole Oceanographic Institution), 2005. / Includes bibliographical references (p. 117-128). / The relatively simple tectonic environment of mid-ocean ridge transform fault (RTF) seismicity provides a unique opportunity for investigation of earthquake and faulting processes. We develop a scaling model that is complete in that all the seismic parameters are related to the RTF tectonic parameters. Laboratory work on the frictional stability of olivine aggregates shows that the depth extent of oceanic faulting is thermally controlled and limited by the 600⁰C isotherm. Slip on RTFs is primarily aseismic, only 15% of the tectonic offset is accommodated by earthquakes. Despite extensive fault areas, few large earthquakes occur on RTFs, and few aftershocks follow the large events. Standard models of seismicity, in which all earthquakes result from the same seismic triggering process, do not describe RTF earthquakes. Instead, large earthquakes appear to be preceded by an extended fault preparation process marked by abundant foreshocks within 1 hour and 15 km of the main- shocks. In our experiments normal force vibrations, such as seismic radiation from nearby earthquakes, can weaken and potentially destabilize steadily creeping faults. / (cont.) Integrating the rheology, geology, and seismicity of RTFs, we develop a synoptic model to better understand the spatial distribution of fault strength and stability and provide insight into slip accommodation on RTFs. / by Margaret S. Boettcher. / Ph.D.

Page generated in 0.0674 seconds