• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Álgebras não associativas octoniônicas e relações extensivas do tipo "De Moivre" /

Pendeza, Cristiane Aparecida. January 2006 (has links)
Orientador: Manoel Ferreira Borges Neto / Banca: Gilberto Aparecido Pratavieira / Banca: José Márcio Machado / Resumo: O presente trabalho tem por objetivo apresentar uma anþalise dos octônios, bem como da álgebra octoniônica 8-dimensional, que, apesar de não associativos, são descritos para um número de estruturas excepcionais como por exemplo os grupos de Lie excepcionais e suas respectivas álgebras, favorecendo assim o entendimento das rotações de espaços euclidianos de dimensão inferior. Por essa razão se tornam fascinantes em aplicações nas diversas áreas da Matemática e Física. Apresenta-se também uma aplicação dos octônios na analogia da relação clássica de Moivre, e presentes conexões entre funções octoniônicas transcendentais e operadores diferencias da teoria de Fueter. / Abstract: The objective of this work is to present an analysis of the octonions, as well as the octonionic algebras 8-dimensional. Although they aren't associative, they are described by a number of structures, such as the Lie's exceptional groups and its respective algebras, which help the understanding of rotations of Euclidian spaces of lower dimension. Because of that they are fascinating in applications in several areas of Mathematics and Physics. This work also presents application of octonions in the analog of The Classical De Moivre Relation and presents connections between octonionic transcendent functions and di erential operators of Fueter Theory. / Mestre
2

Hipercomplexos : um estudo da analicidade e da hiperperiodicidade de funções octoniônicas /

Marão, José Antônio Pires Ferreira. January 2007 (has links)
Orientador: Manoel Ferreira Borges Neto / Banca: José Márcio Machado / Banca: Siovani Cintra Felipussi / Resumo: Com o intuido de bem fundamentar bases teóricas para futuras aplicações dos octônios à Mecânica Quântica, Computação Quântica e Criptografia, um dos objetivos maiores deste trabalho é o de determinar e estudar a analiticidade e hiperperiodicidade de funções octoniônicas, de acordo com o Teorema (3.1), enunciado e demonstrado apropriadamente no texto. Além disso, determina-se para as Funções Trigonométricas Octoniônicas a sua periodicidade, enunciada e demonstrada nos Teoremas (3.2) e (3.3). Outro aspecto relevante abordado diz respeito a uma extensão octoniônica da Função Logarítmica, que pode ser importante para aplicações à Física Teórica de Várias dimensões. / Abstract: With the main purpose of setting up a sound theoretical basis in order to apply octonionic algebra to both Quantum Mechanics and Quantum Computation and Criptography, I have studied and determined the regularity of the exponential octonionic function, through the Theorem (3.1). Moreover the determination of the Trigonometrical Octonionic Function is also made and it is obtained its regularity, stated in Theorem (3.2) and (3.3). An octonionic extension of the Logaritimic Function is also well explored, which opens the possibility of a large number of applications in Theoretical Physics of higher dimensions. / Mestre
3

Analiticidade e efeito gráfico da dilatação em funções octoniônicos quaseconformes do tipo F(Z)=Zn /

Benzatti, Luiz Fernando Landucci. January 2008 (has links)
Orientador: Manoel Ferreira Borges Neto / Banca: Masayoshi Tsuchida / Banca: Siovani Felipussi / Resumo: Neste trabalho estudamos transformações quaseconformes no contexto dos octônios, que são hipercomplexos de oito dimensões. Por não preservar a magnitude dos ângulos, mapeamentos quaseconformes causam uma dilatação linear. A partir da definição métrica de quaseconformidade, utilizamos a forma binomial para mostrar que a distância jf(y) ¡ f(x)j pode ser escrita como um polinômio em r. Com isso, pudemos desenvolver não são um conjunto de fórmulas como também um método computacional simplificado para o cálculo analítico da dilatação. Posteriormente, utilizamos ferramentas gráficas para vizualizar as consequências da dilatação. / Abstract: In this work we study quasiconformal mappings related to octonionic algebra. Since quasicon- formal mappings do not preserve the magnitude of the angles they cause a linear dilatation. We show that it also happens to 8-dimensional hipercomplex. Based on the metric de¯nition of quasiconformal mapping we show that the distance jf(y)¡f(x)j is a polynomial of variable r. Then it¶s possible to make not only a set of formulas but also a computacional method to calculate the dilatation. We also use some graphical tools to visualize the consequences of dilatation. / Mestre

Page generated in 0.0566 seconds