Spelling suggestions: "subject:"oder"" "subject:"odo""
211 |
Chemosensory and Steroid-Responsive Regions of the Medial Amygdala Regulate Distinct Aspects of Opposite-Sex Odor Preference in Male Syrian Hamsters (Mesocricetus Auratus)Maras, Pamela M 09 June 2006 (has links)
In Syrian hamsters, sexual preference requires integration of chemosensory and steroid cues. Although data suggest that separate pathways within the brain process these two signals, the functional significance of this separation is not well understood. Within the medial amygdala, the anterior region (MEa) receives input from the olfactory bulbs, whereas the posterodorsal region (MEpd) is sensitive to steroid hormones. Lesions of either the MEa or MEpd eliminated preference to investigate female over male odors. Importantly, males with MEpd lesions displayed decreased attraction toward female odors, suggesting a decrease in sexual motivation. In contrast, males with MEa lesions displayed high levels of investigation of both female and male odors, suggesting an inability to categorize the relevance of the odor stimuli. These results suggest that both the MEa and MEpd are critical for the expression of opposite-sex odor preference, although they appear to mediate distinct aspects of this behavior.
|
212 |
Odor sensitivity in CD-1 mice for "green" odorsMurali, Sathish kumar January 2011 (has links)
―Green‖ odors comprise a group of eight structurally related aliphatic alkenals and alkenols which are characteristic for the odor of a wide variety of plant materials. Using an automated olfactometer, the olfactory detection thresholds for ―green‖ odors were determined in six CD-1 mice and compared with that of spider monkeys and human subjects. Detection threshold values for alcoholic ‖green‖ odors (cis-3-hexen-1-ol, trans-3-hexen-1-ol, trans-2-hexen-1-ol and 1-hexanol) ranged from 8.1 x 109 to 8.1 x 1011 molecules/cm3 and for aldehydic ‖green‖ odors (cis-3-hexenal, trans-3-hexenal, trans-2-hexenal and n-hexanal) , from 8.1 x 107 to 8.1 x 1011 molecules/ cm3 . Detection threshold values of ―green‖ odor with double bond ranged from 8.1 x 107 to 8.1 x 1011 molecules/cm3 and for ―green‖ odor without double bond ranged from 8.1 x 108 to 8.1 x 1011 molecules/cm3. Detection threshold value of cis- configured ―green‖ odors ranged from 8.1 x 108 to 8.1 x 1011 molecules/ cm3 and for trans- configured ―green‖ odors threshold value ranged from 8.1 x 107 to 8.1 x 1011 molecules/ cm3. Trans-2-hexenal with a double bond at C-2 position in its molecular structure yielded the lowest detection threshold value when compared the other ―green‖ odors (8.1 x 107 to 8.1 x 109 molecules /cm3) which shows not only the presence of double bond plays a major role in detection but the position of the double bond present. A comparison between the present data and data from the other species showed that CD-1 mice displayed lower detection thresholds for all ‖green‖ odors than human subjects and spider monkeys except for the cis-3-hexen-1-ol odor. These findings suggest that the differences in the threshold values between ―green‖ odors are due to the difference in the molecular structure like the presence of double bond and the position of double bond.
|
213 |
Biooxidation of gas-borne hydrogen sulfide and chemical oxidation of gas-borne odorants from rubber processingPeng, Chih-Hao 02 June 2011 (has links)
This dissertation consists of two parts on the treatment of hydrogen sulfide and odorants in gases emitted from rubber processing industry. In the first part, we study performance of removal hydrogen sulfide with bioscrubber. An activated sludge aeration tank (W ¡Ñ L ¡Ñ H = 0.40 ¡Ñ 0.40 ¡Ñ 3.00 m) with a 2 mm-orifice air sparger was used to treat gaseous hydrogen sulfide (H2S). The investigation tested the operational stability as well as how the removal ability of H2S was affected by influent H2S concentration (C0 = 50-900 ppm), aeration intensity (Q/V = 0.083-0.50 m3 m-3 min-1), liquid depth (H = 0.5-3.0 m), and mixed-liquor suspended solids concentration (MLSS = 970-2,800 mg L-1). Experimental results indicate that H2S removal efficiencies of 96% and over 98% were obtained with H = 0.5 m and H > 1.0 m in the cited operation conditions, respectively. Experimental results also indicate no sludge bulking problem occurred with total sulfide loadings of 0.047-0.148 kg S kg-1 MLSS d-1.
The second part aimed at the removal of odorous compounds in gases emitted from rubber processing industries. Simulated odorous gas for test was prepared by mixing fresh air and an odorous gas drawn from an oven in which a sample of rubber powder was kept either at 160¢XC (for a thermal plastic rubber) or 200¢XC (for a thermal setting rubber). The prepared odorous gas was then premixed with a definite amount of ozone-enriched air and introduced into a contact system. The contact system consists of two sieve-plate columns connected in series and each column has four 1-L chambers. Depending on with or without introducing circulating scrubbing water into the columns, the oxidation reaction could be either wet or dry one. Results indicate the wet oxidation got better performances than the dry one. The former got 97 and over 90% removal of VOCs (volatile organic compounds) and odorous intensity removal, respectively, with the operation conditions of initial ozone concentration 4.0 ppm, THC (total hydrocarbon) concentrations 6.5¡V10.3 ppm (methane equivalent), oxidation temperature 37.3¢XC, gas empty bed retention time (EBRT) 12 s, and liquid/gas rate ratio 0.01 m3/m3. With conditions similar to those cited above, odor concentration (dilutions to the threshold, D/T) in the test gas could be reduced from 1,738¡V3,090 to 31¡V98 with EBRTs of 11.4¡V14.5 s. Activated carbon is effective for both physical and chemical removals of residual VOCs, odorous compounds, and ozone in the effluent gas from the ozonation system. Economical analysis indicates that around US$ 0.16 is required for treating 1,000 m3 of the tested foul gas by the proposed ozonation process.
|
214 |
Chemical Scrubbing of Odorous Fumes Emitted from Hot-Melted Asphalt PlantsChen, Po-cheng 11 August 2011 (has links)
Hot-melted asphalt (HMA) plants use sized gravels, asphalt and/or recycled asphalt as raw materials. In the plant, the materials are heated to certain preset temperatures and blended at fixed ratios at around 170oC to prepare the required HMA for road paving. In the asphalt-melting, hot-blending and dumping operations, fumes and particulates emit from the process equipments. The emitted gases contain various volatile organic compounds (VOCs) and poly aromatic hydrocarbons (PAHs) which are harmful to the health of the plant workers and nearby residents. Complaints from the residents also come with the fume and odorous emissions.
In this study, an oxidation-reduction-in-series scrubbing process was tested to remove odorous compounds in waste gases emitted from HMA plants. Waste gas samples for test were collected from the vent hole of an oven which contains a heated sample of asphalt or recycled asphalt concrete. Sodium hypochlorite solution was used to scrub and oxidize the compounds and hydrogen peroxide to reduce the chlorine emitted from the oxidative scrubber. A gas chromatography with a mass spectrophotometric detector (GC-MSD) was used for the identification of the odorous species and their concentrations in the waste gases. Sensory tests were also used to determine the odor removal efficiency.
GC-MSD examination results indicates that alkanes, arenes, alkenes, halides, esters, and carbonyl compounds were detected in the test gas. Scrubbing test results indicate that with oxidative solution of 50-60 mg/L residual chlorine at pH 7.0-7.5 and reductive solution of 35 mg/L hydrogen peroxide at pH >12, over 90% of the VOCs in the tested gas could be removed. Odor intensities could be reduced from 3,090 (expressed as dilutions to threshold) to 73. Pungent asphalt odor in the test gas was turned into slight sulfur smell after the scrubbing.
For removing the odors from 500 Nm3/min of the flue gas vented from a HMA plant, an analysis indicates the required total cost for chemicals (sodium hypochlorite solution, hydrogen peroxide and sodium hydroxide) added to the scrubbers was around 2,800 NT$/day (US$ 95/day) for a daily operation time of 10 hours. The cost is far lower than that by the traditional thermal incineration one (25,000 NT$/day or US$ 850/day) or by the regenerative thermal oxidation (RTO) one (14,300 NT$/day or US$ 485/day). This study has successfully developed an economical and effective chemical scrubbing technology for the removal of odorous compounds in gases emitted from HMA plants.
|
215 |
Investigation of odor and its improvement in Kaohsiung cityChen, Wen-wen 16 July 2006 (has links)
This study investigates characteristics of odorous materials and their odor intensities emitted from various commercial and industrial sources in the Kaohsiung City. An overview of odor complaints from the city people is presented and discussed.
Results indicate that, due to the increasing people concerns about the odor emission problems, more frequent checks done by the City EPA officers, governmental assistances to the pollution makers on the pollution control technologies, and the enforcement of more stringent environmental protection regulations, odor-complaint cases in this city are decreasing in recent years. However, people are giving more attention to odors from food-cooking emissions and the associated complaint cases are increasing. Emissions from restaurants and plants become the two major odor sources in this city.
For the plant emissions, odorous chemicals emitted from the Kaohsiung Refinery, located in northern Zouying District, were detected to be benzene, toluene, xylenes, and styrene. The Chianjhen storage and pumping station, located by the Kaohsiung Harbor, emits some 40 different chemicals. The majors among them are methanol, ammonia, ethylene, n-pentane, chlorodifluoromethane, methyl tert-butyl ether (MTBE), propylene, cyclohexane, styrene, acetone, 1,2-dichloroethane, propylene oxide and vinyl chloride. Prompt leaks from the storage tanks and during the loading and unloading operations account for the emissions. Plants located in the Chianjhen Export Processing Zone emit chemicals, mainly methyl methacrylate, toluene, propylene glycol monomethyl ether acetate (PGMEA), ammonia, ethyl acetate and ethanol, which cause only a few complaint cases. The emitted chemicals are among the ones used by the plants as feed stokes or solvents.
Restaurant located in Chianjhen and Hsiogang Districts emit large amount of food-cooking odorants, however, the percentage of odorous complaining for the emissions is relatively high in the Zouying District as compared to the other administrative districts investigated in this study. Major components of the food-cooking emissions include hydrogen sulfide, dimethyl sulfide (DMS), dimethyl disulfide (DMDS), ammonia, and methylamine. Relative percentages among these chemicals depend on the cooking materials and styles.
Results also indicate that industries or businesses, such as petrochemical, surface coating, paint manufacturing, fuel station, storage vessels, semiconductor manufacturing, adhesive tape manufacturing and cloth dry-cleaning, are major odor and chemical emission sources which need to be continuously implemented for getting more emission reductions in the near future.
|
216 |
Odour control and management in Hong Kong sewage treatment infrastructuresWong, Ying-kin, 黃英健 January 2013 (has links)
Many complaints were received from the residential area around the Shatin Sewage Treatment Works (STSTW) about the presence of odour. The dominant odour marker H2S was selected to be studied. A review of the odour measurement and sampling methods, together with the specification of the standard limits and health effects were made. The formation process of H2S was investigated and the abatement and control measures in terms of physical, chemical and biological techniques were compared. The monthly rate of H2S emission in the atmosphere was calculated from the soluble sulfide and the measured wastewater flow at the inlet works, primary sedimentation tanks, aeration tanks, and sludge digestive and storage tanks, and the H2S mapping was carried out at the same places. Meteorological data including wind speed, wind direction, temperature and pressure were collected. The effect of temperature and pH on H2S generation is shown, and the effectiveness of odour control and deodourization processes was studied. A Gaussian dispersion model of Industrial Source Complex version 3 (ISC3) was applied in predicting the ground H2S level at various air sensitive receivers in the vicinity of STSTW. None of the places exceeded the recommended H2S concentration of World Health Organization (WHO) and the odour is a localized problem in STSTW of 35% area having H2S ranging in 0.01--‐0.023ppm. Recommendations are suggested in both short-term improvement in operation and maintenance practice and long-term design and construction of sewage treatment facilities. / published_or_final_version / Environmental Management / Master / Master of Science in Environmental Management
|
217 |
Olfactory Perception and Physiology in Drosophila melanogasterBarth, Jonas 16 May 2013 (has links)
No description available.
|
218 |
Zeolite in pig diet : effect on growth performance and air qualityChoinière, Denis. January 1999 (has links)
Zeolite (77% clinoptilolite) was supplemented in grower hog rations at a rate of 2 or 5%. The growth performance (weight gain, daily consumption and feed conversion) and air quality were compared against a control group's where zeolite was replaced by fine sand. A significant reduction in the feed/gain ratio and daily consumption was observed when 2% zeolite was fed to pigs weighing less than 40 kg. The same results were obtained when 5% zeolite was fed to pigs weighing more thoun 50 kg. No significant difference in air quality (CO 2, NH3, H2S and temperature) was noticed between the control and the zeolite room even if the NH3, level fell from 12.5 to 8.7 ppm when the zeolite level was increased from 2 to 5%. A slight reduction of odor intensity was observed in the zeolite room. In parallel with this research, a dynamic automated olfactometer for six lists was conceived and built according to American and European guidelines. This instrument measures agricultural odors with precision and speed.
|
219 |
Flavor chemistry of irradiated milk fatKhatri, Lakho Lilaram 25 October 1965 (has links)
Increasing interest has been shown in the irradiation sterilization
and irradiation pasteurization of foods, but problems of off-flavors
and odors are still unsolved, especially in the case of dairy products.
From the flavor chemistry point of view, milk lipids are very highly
susceptible to irradiation effects. Therefore, this investigation was
designed to study some irradiation induced reactions involving flavor
changes in the milk fat and to identify the volatile components produced
in the milk fat upon irradiation.
Milk fat, prepared from raw sweet cream and washed free of
phospholipids, was first irradiated in the presence of air and under
vacuum in glass vials at 4.5 Mrad with gamma rays from cobalt-60.
The irradiation resulted in increase in TBA number, peroxide value,
total monocarbonyls, bleaching of color, slightly rancid and typical
candle-like off-flavors. Free fatty acids were also produced upon
irradiation. The changes were more drastic in air along with production
of a slight oxidized flavor. The monocarbonyls identified by
column and paper chromatographic methods in irradiated milk fat include: C₁ through C₁₂, C₁₄ , and C₁₆ n-alkanals; C₃ through C₉,
C₁₁, C₁₃ and C₁₅ alk-2-ones with only traces of C₆ and C₈ alk-2-
ones; and C₅, C₆, C₉, and C₁₂ alk-2-enals.
Irradiation of milk fat that had been dried over calcium hydride
also caused free fatty acid production, especially short chain fatty
acids. Methyl octanoate treated with calcium hydride and irradiated
at 1.5, 3.0, 4.5, and 6.0 Mrad yielded small quantities of free
octanoic acid, confirming that irradiation caused fission of the ester
linkage even when traces of water were removed. The quantities of
octanoic acid formed increased with increasing dose of irradiation.
For identification of volatile components, the milk fat was irradiated
in 307x409 'C' enameled cans under vacuum. The headspace
analysis showed some air still left in the cans. Irradiation resulted
in consumption of oxygen and production of hydrogen, carbon
monoxide, carbon dioxide, and methane as identified in the headspace
gases. The volatiles were isolated from the irradiated and
control milk fats by low temperature, vacuum steam distillation at
40°C and 1-2 mm Hg. The volatile components were then extracted
from the aqueous distillate with ethyl ether. The ethyl ether extract
exhibited the typical candle-like defect. The ethyl ether concentrate
was analyzed by combination of GLC and fast-scan mass spectrometric
techniques. Identification of various components was achieved
on the basis of mass spectral data and coincidence of gas chromatographic retention times. In the case of the components
for which only GLC t[subscript r]/t[subscript r] evidence was available or the mass spectra
obtained were not satisfactory, the identity assigned was only tentative.
The volatile compounds that were positively identified to be
present in irradiated milk fat are given below:
n-Alkanes C₅ through C₁₇
1-Alkenes C₅, C₇ through C₁₇
Fatty acids C₄, C₆, C₈ and C₁₀
n-Alkanals C₅ through C₁₁
Others γ-decalactone, δ-decalactone, 2-heptanone,
benzene, ethyl acetate, chloroform, and
dichlorobenzene.
The tentative identification was obtained for the following
compounds:
γ-lactones C₆ and C₈
δ-lactones C₆, C₈, C₁₁, and C₁₂
1, ?-alkadienes C₁₀, C₁₁, C₁₂, C₁₆ and C₁₇
iso-alkanes C₁₀, C₁₁, C₁₂, and C₁₃
Others methyl hexanoate, 2-hexanone, 4-heptanone
and n-dodecanal.
The compounds present in unirradiated control milk fat included:
short chain fatty acids (C₄, C₆, C₈, and C₁₀), C₈, C₁₀,
and C₁₂ δ-lactones, 2-heptanone, chloroform, dichlorobenzene,
benzene, toluene, and ethyl-benzene. Only tentative identity was
established for most of these components in control milk fat.
Possible reaction mechanisms are presented for the formation of
the compounds in irradiated milk fat. / Graduation date: 1966
|
220 |
Time-temperature effects on Cheddar cheese ripening : sensory and microbiological changesKirby, Constance Lamb 07 December 1992 (has links)
Graduation date: 1993
|
Page generated in 0.041 seconds