• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Deign of Positive Displacement Gear Machine-based Electro-hydraulic Units.pdf

Federico Zappaterra (17134597) 13 October 2023 (has links)
<p dir="ltr">In recent years increasingly stringent regulations regarding the pollution emissions and greenhouse gasses (GHG) of off-highway vehicles have emerged. However, recent studies underscores that off-highway vehicles have an average efficiency of 30%. In response, researchers are exploring the possibility of electrifying these vehicles with electric machines (EMs) potentially undertaking one, multiple, or all the vehicular functions previously reliant on internal combustion engines (ICEs).</p><p dir="ltr">Contemporary off-highway vehicle technology revolves around hydraulic systems tailored for diesel engines, tuned to specific torque characteristics and operating at a single speed. While replacing the prime mover with electric machines, the proper hydraulic supply capable of matching the same torque speed characteristics must be found. Furthermore, it must be determined whether an integration capable of reducing the mass, cost, and volume can be implemented, and if energy recuperation is possible. </p><p dir="ltr">In essence, achieving the desired transformation in off-highway vehicle technology necessitates a comprehensive reevaluation of both hydraulic systems and power sources, with electrification emerging as a promising strategy for harmonizing efficiency, emission standards, and performance expectations. </p><p><br></p><p dir="ltr">This work proposes guidelines to systematically design EMs and positive displacement hydraulic gear machines (HMs), along with their integration in an electro-hydraulic unit (EHU). To do so, three different variants of EHU are produced. The first variant features an external gear machine (EGM) integrated in a permanent magnet synchronous electric machine (PMSEM). The second and third variants integrate an internal gear machine (IGM) and a PMSEM, wherein the final variant introduces features endowing its operation at high rotational velocities.</p><p dir="ltr">The EM and HM constituting all variants of EHU are designed using a genetic algorithm-based optimization framework. This optimization framework encapsulates dedicated models for the EM and the HM that allow the calculation of the EHU performance. The first optimization objectives are the minimization of power consumption over the duty cycle of the selected reference machine, the minimization of the pressure and flow ripple, and maximization of the power density of the EHU. The optimization of the second and third variants instead only aims to maximize the total efficiency and power density of the EHU. </p><p dir="ltr">After having determined the parameters of the EHU through the optimization procedure the designs are refined with thorough simulations focusing on the fluid-dynamic features and the design of the axial balance system of the HMs. </p><p dir="ltr">The three variants present an increasing level of HM and EM integration and component reduction. While in the first variant HM and EM have a dedicated housing, and the HM is only positioned in the inert region of the EM, in the latest variants the HM and the EM also share the same casing. The first variant of EHU is air cooled by a radial fan system attached to the EM rotor and openings machined in the casing. The second variant takes advantage of the extreme integration and the differential pressure generated across the HM to liquid cooling the EM. The third variant necessitates the use of an external system to cool the EM. </p><p dir="ltr">To prove the effectiveness of the design process the first two EHU variants are prototyped and tested. The first EHU variant is tested both in a standalone configuration and on the reference machine showing total efficiency values up to 69%, proving its functionality and proving the capability of recuperating energy. The tests conducted on the second variant EHU show a volumetric efficiency that ranges between 81% and above 96% for a pinion rotation velocity of 6000 rpm proving the value of the presented design process. Despite the good quality of the volumetric efficiency values, this EHU variant present morphological limitations that negatively impact its mechanical efficiency. Finally, the third EHU concept is presented not only to remedy the morphological limitations of the second variant but also to address the challenges raised by high rotational velocity operation. </p>
2

Impacts of Off-Highway Vehicle Activity on Land Cover Change and Dune Dynamics: Algodones Dunes, California

January 2018 (has links)
abstract: Use of off-highway vehicles (OHV) in natural landscapes is a popular outdoor activity around the world. Rapid-growing OHV activity causes impacts on vegetation and land cover within these landscapes and can be an important factor in land degradation and ecosystem change. The Algodones Dunes in southeastern California is one of the largest inland sand dune complexes in the United States and hosts many endangered species. This study examines changes in land cover and OHV activity within two OHV active sites in comparison to an adjoined protected area. The study also investigates potential associations between land cover changes, climate trends, and OHV activity over recent decades. Time-series analysis was used to investigate the spatial-temporal changes and trends in the land cover in the Algodones Dunes from 2001 to 2016. In addition, high-resolution aerial photographs were analyzed to determine spatial patterns of OHV usage in comparison to visitor estimation collected by the Bureau of Land Management and observed changes in land cover composition between the control site and OHVs areas. A decreasing trend in Normalized Difference Vegetation Index over time indicates a decline in the amount of vegetation cover, which corresponds with an increasing trend in albedo and land surface temperature. Results also show a substantial difference in land cover between the control site and OHVs areas, which typically have a lower amount of vegetation cover, higher exposed sand surface, and increased anthropogenic features. Both climatic variations and OHV activity are statistically associated with land cover change in the dune field, although distinct causal mechanisms for the observed declines in vegetation cover could not be separated. The persistence of drought could inhibit vegetation growth and germination that, in turn, would hinder vegetation recovery in OHV areas. Meanwhile, repeated OHV driving has direct physical impacts on vegetation and landscape morphology, such as canopy destruction, root exposure, and increased aeolian sand transport. Active ecosystem protection and restoration is recommended to mitigate the response of declining vegetation cover and habitat loss to the impacts of OHV activity and climatic variability and allow natural recovery of re-establishement of nebkha dune ecosystems in the Algodones Dunes. / Dissertation/Thesis / Masters Thesis Geography 2018
3

MEASURING SITUATION AWARENESS IN MIXED REALITY SIMULATIONS

Forsman, Viking January 2019 (has links)
Off-highway vehicle, such as excavators and forklifts, are heavy machines that are capable of causing harm to humans or damage property. Therefore, it is necessary to be able to develop interfaces for these kind of vehicles that can aid the operator to maintain a high level of situational awareness. How the interface affects the operators’ situational awareness is consequently an important metric to measure when evaluating the interface. Mixed reality simulators can be used to both develop and evaluate such interfaces in an immersive and safe environment. In this thesis we investigated how to measure situational awareness in a mixed-reality off-highway vehicle simulation scenario, without having to pause the scenario, by cross-referencing logs from the virtual environment and logs from the users' gaze position. Our method for investigating this research question was to perform a literature study and a user test. Each participant in the user test filled out a SART post-simulation questionnaire which we then compared with our measurement system.
4

Modeling, Control and State Estimation of a Roll Simulator

Zagorski, Scott B. 17 December 2012 (has links)
No description available.

Page generated in 0.0405 seconds