Spelling suggestions: "subject:"oil bands"" "subject:"oil hands""
161 |
Wetland assessment in Alberta's oil sands mining areaRooney, Rebecca Unknown Date
No description available.
|
162 |
Oil sands mine planning and waste management using goal programmingBen-Awuah, Eugene Unknown Date
No description available.
|
163 |
Oil Sands Mine Reclamation Using Boreal Forest Surface Soil (LFH) in Northern AlbertaMacKenzie, Dean D Unknown Date
No description available.
|
164 |
Physico-Chemical Processes for Oil Sands Process-Affected Water TreatmentPourrezaei,Parastoo Unknown Date
No description available.
|
165 |
Measurement of Carrier Fluid Viscosities for Oil Sand Extraction and Tailings SlurriesSmith, Jessie L Unknown Date
No description available.
|
166 |
Effect of Laminar Shear on the Aggregate Structure of Flocculant-dosed Kaolinite SlurriesVaezi Ghobaeiyeh, Farid Unknown Date
No description available.
|
167 |
A toxicity assessment of sludge fluids associated with tar sands tailings /Abdel Warith, Mostafa. January 1983 (has links)
No description available.
|
168 |
Dismantling dependency, disarming a boom: petro-politics and the staples state in an era of climate crisisNoble, Paul 29 April 2015 (has links)
This thesis has two central objectives. First, drawing on both the insights contained in the staples approach and the frames and narratives mobilized by contemporary political actors, it attempts to provide insight into the political-economic drivers underpinning the large and growing political influence of the Canadian oil sands. Second, it assesses the effects of this influence on Canadian society and the Canadian state. This influence is observable materially, as with the federal government’s oil sands-oriented policy changes and mobilization of the state security apparatus in its defense, and in less concrete ways, as with the rise of discourses conflating national interest with continued oil sands expansion. This thesis concludes that the effects of this influence have been negative and profound, and in an era of climate crisis, alternatives to Canada’s dominant political economic trends must be urgently sought. / Graduate / paulnoblegreen@gmail.com
|
169 |
An evaluation of the use of natural stable isotopes of water to track water movement through oil sands mine closure landforms2014 March 1900 (has links)
Surface mining of oil sands results in extensive land disturbance, earth movement and water usage. After mining, the disturbed landscapes must be reconstructed and reclaimed as natural landforms. There are numerous challenges associated with understanding the responses of these landforms over time, including a need to track and characterize water movement through closure landforms to understand the hydrological responses of these landforms over time. This study attempted to use natural stable isotopes of water (δD and δ18O) to identify and characterize source waters from various closure landforms at an oil sands mine site.
The study area is Syncrude‟s Mildred Lake mine, an open pit oil sands mine located in northern Alberta. A variety of groundwater, surface water and soil samples from a variety of landforms (overburden dumps, composite and mature fine tailings areas, tailings sand structures and freshwater reservoirs) were collected in an attempt to fully represent the isotopic distribution of waters across the mine site. Laboratory analysis of δD and δ18O was done on all samples.
The local meteoric water line first established by Hilderman (2011) was redeveloped with additional precipitation data and calculated to be δD=7.0(δ18O) -18.6‰. A natural evaporation line having a slope of 5.3 was calculated for the mine site with samples collected from three surface water ponds on the mine site.
Five primary source waters were identified on the mine site: process affected water/tailings, rainfall, snow, interstitial shale water and Mildred Lake water. It was found that these sources of water generally have unique natural stable water isotope signatures. Process affected water at the site generally had an enriched signature compared to other mine waters. The enrichment was attributed to fractionation from the recycle water circuit and natural evaporation.
The characterizations of these source waters were then used in several hydrogeological examples to demonstrate that natural stable water isotopes can be applied to water balance estimates and to identify water movement processes related to closure landforms.
|
170 |
Productivity and carbon accumulation potential of transferred biofilms in reclaimed oil sands-affected wetlandsFrederick, Kurt R. 06 1900 (has links)
Biofilms are significant contributors to primary production, nutrient cycling, bio-stabilization and the food web of wetland ecosystems. Photoautotrophic biomass (PB) and primary production (PP) were determined for biofilms exposed to various treatments and materials in wetlands near Fort McMurray. Biofilm additions and oil sands process-affected materials were expected to increase the microbial colonization rates on treated substrates and subsequently PB and PP of biofilms over time as compared to controls and unaffected materials. Biofilms survived the transfers and colonized new substrates immediately. Oil sands process affected materials were found to increase PB and PP throughout the first year. A strong decreasing trend for both PB and PP in treatment microcosms occurred in year two, eventually coalescing with control conditions at a lower equilibrium. Transferred biofilms and treatment materials, therefore, increased overall wetland productivity during the initial stages of wetland development when growing conditions are most limiting. / Land Reclamation and Remediation
|
Page generated in 0.0652 seconds