Spelling suggestions: "subject:"oil bands"" "subject:"oil hands""
231 |
Analysis of the cost effectiveness of alternative policies and technologies to manage water extractions by the oil sands sector along the lower Athabasca RiverMannix, Amy Elinor Unknown Date
No description available.
|
232 |
Rapid densification of the oil sands mature fine tailings (MFT) by microbial activityGuo, Chengmai Unknown Date
No description available.
|
233 |
Lakes of the Peace-Athabasca Delta: Controls on nutrients, chemistry, phytoplankton, epiphyton and deposition of polycyclic aromatic compounds (PACs)Wiklund, Johan Andre January 2012 (has links)
Floodplain lakes are strongly regulated by river connectivity because floodwaters exert strong influence on the water balance, the physical, chemical and biological limnological conditions, and the influx of contaminants. The Peace-Athabasca Delta (PAD) in northern Alberta (Canada) is a hydrologically complex landscape and is an important node in the upper Mackenzie River Drainage Basin. The ecological integrity of the PAD is potentially threatened by multiple environmental stressors, yet our understanding of the hydroecology of this large floodplain remains underdeveloped. Indeed, ever since the planning and construction of the WAC Bennett Dam (1960s), concerns have grown over the effects of upstream human activities on the lakes of the PAD. More recently, concerns over the health of the PAD have intensified and come to the fore of national and international dialogue due to water abstraction and mining and processing activities by the rapidly expanding oil sands industry centred in Fort McMurray Alberta. Currently, widespread perception is that upstream human activities have reduced water levels and frequency of flooding at the PAD, which have lowered nutrient availability and productivity of perched basin lakes, and have increased supply of pollutants from oil sands. However, these perceptions remain based on insufficient knowledge of pre-impact conditions and natural variability. Current and past relations between hydrology and limnology of PAD lakes are mostly undocumented, particularly during the important spring freshet period when the effects of river flood waters are strongest. Similarly, knowledge of the deposition of oil-sands- related contaminants in the PAD remains insufficient to determine whether anthropogenic activities have increased the deposition of important oil-sands-related contaminants such as polycyclic aromatic compounds (PACs) relative to natural processes. Such knowledge gaps must be filled to achieve effective monitoring, policy and governance concerning impacts of industrial development and the protection of human and environmental health within the PAD and Mackenzie drainage basin. This thesis examines the effects of river flooding (and the lack of) on water clarity, nutrients, chemistry, phytoplankton abundance, epiphyton community composition and the deposition of polycyclic aromatic compounds (PACs) in lakes of the Peace-Athabasca Delta.
To determine the role of flooding on contemporary epiphytic diatom communities (an abundant and diverse guild of primary producers in PAD lakes), a field experiment was conducted examining the community composition and abundance of epiphytic diatoms in four PAD lakes. Two of these four lakes had received floodwaters that spring and two had not. Epiphytic diatom communities in each lake were sampled during the peak macrophyte biomass period (summer) from two macrophyte taxa (Potamogeton zosteriformis, P. perfoliatus var. richardsonii) and from polypropylene artificial substrates previously deployed that spring. A two-way analysis of similarity (ANOSIM) test identified that epiphytic diatom community composition differed between lakes that flooded and those that did not flood. From the use of similarity percentage (SIMPER) analysis, diatom taxa were identified that discriminate between flooded and non-flooded lakes. The relative abundance of ‘strong flood indicator taxa’ was used to construct an event-scale flood record spanning the past ~180 years using analyses of sedimentary diatom assemblages from a closed-drainage lake (PAD 5). Results were verified by close agreement with an independent paleo-flood record from a nearby flood-prone oxbow lake (PAD 54) and historical records. Comparison of epiphytic diatoms in flooded and non-flooded lakes in this study provides a promising approach to detect changes in flood frequency, and may have applications for reconstructing other pulse-type disturbances such as hurricanes and pollutant spills. Additionally, this study demonstrates that artificial substrates can provide an effective bio-monitoring tool for lakes of the PAD and elsewhere.
To improve our understanding of the hydrolimnological responses of lake in the PAD to flooding, repeated measurements over three years (2003-05) were made on a series of lakes along a hydrological gradient. This allowed the role of river flooding to be characterized on limnological conditions of lakes and to identify the patterns and timescales of limnological change after flooding. River floodwaters elevate lake water concentrations of suspended sediment, total phosphorus (TP), SO4 and dissolved Si (DSi), and reduce concentrations of total Kjeldahl nitrogen (TKN), DOC and most ions. River flooding increases limnological homogeneity among lakes, because post-flood conditions are strongly affected by the river water properties. After floodwaters recede, limnological conditions become more heterogeneous among lakes in response to diversity of local basin influences (geology, slope, vegetation, depth, fetch, and biological communities and processes), and limnological changes occur at two distinct timescales. In the weeks to months after flooding, water clarity increases as suspended sediments and TP settle out of the water column. In the absence of flooding for many years to decades, evaporative concentration leads to an increase in most nutrients (TKN, inorganic N, and dissolved P), DOC and ions. Contrary to a prevailing paradigm, these results suggest that regular flooding is not required to maintain high nutrient concentrations. In light of anticipated declines in river discharge, limnological conditions in the southern Athabasca sector will become increasingly less dominated by the short-term effects of flooding, and resemble nutrient- and solute-rich lakes in the northern Peace sector that are infrequently flooded.
To determine the roles of the Athabasca River and atmospheric transport as vectors for the deposition of PACs in the PAD, sediment cores spanning the last ~200 years were collected from three lakes within the delta. A closed-drainage basin elevated well above the floodplain (PAD 18) was selected to determine temporal patterns of change in PAC concentration due to atmospheric deposition and within-basin production of PACs. Known patterns of paleohydrological changes at the other two lakes (PAD 23 and 31) were used to assess the role of the Athabasca River in delivering PACs to the Athabasca Delta during the ~200 year. Well- dated sediment core samples were analysed for 52 alkylated and non-alkylated PACs (method EPA 3540/8270-GC/MS). Sediments deposited in the non-flood prone lake (PAD 18) contained lower concentrations of total PACs compared to sediments deposited during flood-prone periods in the other study lakes, and were dominated by PACs of a pyrogenic rather than bitumen origin. Multivariate analysis of similarity tests identified that the composition of PACs differs between sediments deposited during not flood-prone and flood-prone periods. Subsequent Similarities Percentage (SIMPER) analysis was used and identified seven PACs that are preferentially deposited during flood-prone periods. These seven PACs are bitumen-associated, river-transported and account for 51% of the total PACs found in oil-sands sediment. At PAD 31, which has been flood-prone both before and since onset of Athabasca oil sands development, identified no measureable differences in both the proportion and concentration of the river-transported indicator PACs in sediments deposited pre-1940s versus post-1982. Our findings suggest that natural erosion of exposed bitumen along the banks of the Athabasca River and its tributaries is the main process delivering PACs to the Athabasca Delta, and that the spring freshet is a key period for contaminant mobilization and transport. Such key baseline environmental information is essential for informed management of natural resources and human-health concerns by provincial and federal regulatory agencies and industry, and for designing effective long-term monitoring and surveillance programs for the lower Athabasca River watershed in the face of future oil sands development. Further monitoring activities and additional paleolimnological studies of the depositional history of PACs and other oil-sands- and non-oil-sands-related contaminants is strongly recommended.
Overall, results of this research identify that river flooding exerts strong control on physical, chemical and biological conditions of lakes within the PAD. However, contrary to prevailing paradigms, the PAD is not a landscape that has been adversely and permanently affected by regulation of the Peace River and industrial development of the oil sands along the Athabasca River. Instead, data from contemporary and paleolimnological studies identify that natural processes continue to dominate the delivery of water and contaminants to the delta. Regular and frequent flooding is not essential to maintain the supply of nutrients and productivity of delta lakes, which has been a widespread paradigm that developed in the absence of objective scientific data. Instead, nutrient concentrations rise over years to decades after flooding and lake productivity increases. During the thesis research, novel approaches were developed and demonstrated to be effective. Namely, new artificial substrate samplers were designed for aquatic biomonitoring that accrue periphyton and can identify the occurrence of flood events. Also, paleolimnological methods were employed to characterize the composition and concentration of PACs supplied by natural processes prior to oil sands industrial activity, which serves as an important benchmark for assessing industrial impacts. These are effective methods that can be employed to improve monitoring programs and scientific understanding of the factors affecting this world-renowned landscape, as well as floodplains elsewhere.
|
234 |
Analysis of the cost effectiveness of alternative policies and technologies to manage water extractions by the oil sands sector along the lower Athabasca RiverMannix, Amy Elinor 11 1900 (has links)
The Lower Athabasca Water Management Framework limits water extractions by the oil sands industry near Fort McMurray, Alberta. To increase water-use efficiency and minimise the cost of water restrictions, several policy and technology options were developed and assessed using quantitative and qualitative methods. Selected options were the policies of water trade and pricing with refund, and the technologies of storage, and consolidated tailings and increased recycling. Options were designed based on year 2020 demand and assessed relative to prior allocation. Using linear programming and static optimisation, it is shown that an off-stream storage sized to avoid water restrictions, in combination with efficient water allocation (e.g. water trade), is most cost-effective, although provides no ongoing incentive to increase water-use efficiency. Only the policy options provide equal incentives across firms to increase efficiency. To achieve both objectives of increased water-use efficiency and minimised costs, a combined policy and technology approach is recommended. / Agricultural and Resource Economics
|
235 |
Geovisualization of boreal peatland architecture in a three dimensional hydrogeological framework using ground penetrating radar and LiDAR at Mariana Lakes, Alberta, CanadaShulba, William Paul 07 June 2021 (has links)
Communicating science in three-dimensional (3D) multimedia is an immersive and interactive way to explore scientific processes (Signals and Communication Technology, 2019). Geovisualization is an emerging 3D multimedia method for visual analysis, synthesis, and presentation of geospatial, geologic, and geophysical data (MacEachren & Kraak, 2001). There is an identified need to develop scientific communication tools to further understand boreal peatland evolution, hydrogeology, ecology, and geochemistry (Bubier et al., 2003) since the International Union of Conservation of Nature asserts that peatlands are among the most valuable ecosystems on Earth, critical for preserving global biodiversity, providing drinking water, minimising flood risk, preventing wildfire, and mitigating climate change (Hama et al., 2000).
The intention of this thesis is to communicate a novel approach to geovisualize boreal peatland architecture using Light Detection and Ranging (LiDAR) and Ground Penetrating Radar (GPR). GPR and LiDAR have been used to create 3D subsurface geovisualizations for archaeology (Kenady et al., 2018; Schultz & Martin, 2011) and resource geology (Corradini et al., 2020; Koyan & Tronicke, 2020) although application to peatland hydrogeology is uncommon.
Point-source hydrogeological and geochemical data were integrated with 3D geological models to estimate carbon and nitrogen storage in an archetypal boreal peatland near Mariana Lakes, Alberta. Peatland geometry resembled a shallow lake basin with depths greatest in fens (>10 m) and thinnest in bogs (<2 m). Hydraulic conductivity was only a few meters per year and vertical groundwater movement was limited. Sequestered carbon and nutrients increased with depth. The average concentration of dissolved ammonium was 3 grams per cubic metre of peat (g/m3), 5g/m3of Total Kjeldahl Nitrogen, 60g/m3 of dissolved organic carbon and 200g/m3 of dissolved inorganic carbon. Tritium detection from atmospheric atomic weapons radionuclide fallout revealed that in deeper anaerobic peat (catotelm), tritium was absent, signifying groundwater was older than 50 years and not mixed with meteoric waters. Fen catotelm channels are likely acting as gravity-driven hydraulic traps (Tóth, 1999). / Graduate
|
236 |
Udržitelný rozvoj v Kanadě ve vztahu k těžbě ropných písků / Sustainable Development in Canada in Relation to Oil Sands DevelopmentsPodhola, Adam January 2013 (has links)
The aim of this thesis is to evaluate to what extent Canada and Alberta have been fulfilling the principles of sustainable development as they have adopted in the 1990s from the essential U.N. documents - the Brundtland Report and the Rio Declaration- and to what extent both governments failed in providing and enforcing efficient environmental law protection as it is the basic premise for achieving sustainability. I assessed this level of sustainability in Canada and Alberta on the basis of a stronger and weaker sustainability theoretical framework. Author's presumption was that Canada, as it defined sustainable development in its legislation, acted according to stronger sustainability, which emphasizes stronger protective environmental measures. Given a very large scope of environmental impacts of oil extraction on different ecosystems, the sector of water resources was selected to serve as a case study to compare and analyze government and alternative reports assessing the sustainability of water management. Thus, the author follows how the oil industry in Alberta affects the water resources and how both governments of Canada and Alberta provide environmental protection to the water resources. In this respect the author illustrates how the government is reluctant towards the implementation of...
|
237 |
Landscapes of perception : reclaiming the Athabasca oil sands and the Sydney tar pondsDance, Anne T. January 2013 (has links)
This interdisciplinary project offers new insights into the reclamation history of two of the most controversial and contaminated sites in Canadian history: the Sydney tar ponds and coke ovens and the Athabasca oil sands. It argues that Canada’s natural resource-dependent economy, combined with jurisdictional uncertainty, created a hesitant, fragmentary site cleanup regime, one that left room for different ideas about landscapes to shape and even distort reclamation’s goals and processes. In the absence of substantive reclamation standards and legislation, researchers struggled to accommodate the unique challenges of the oil sands during the 1960s and 1970s. Ambitious goals for reclamation faltered, and even the most successful examples of oil sands reclamation differed significantly from the pre-extraction environment; reclamation was not restoration. Planners envisioned transforming northeastern Alberta into a managed wilderness and recreation nirvana, but few of these plans were realised. The Sydney tar ponds experience suggests that truly successful reclamation cannot exist unless past injustices are fully acknowledged, reparations made, and a more complete narrative of contamination and reclamation constructed through open deliberation. Reclamation, after all, does not repair history; nor can it erase the past. Effective oil sands reclamation, then, requires a reconsideration of the site’s past and an acknowledgement of the perpetuated vulnerabilities and injustices wrought by development and reclamation.
|
238 |
Comparison of geoenvironmental properties of caustic and noncaustic oil sand fine tailingsMiller, Warren Gregory 11 1900 (has links)
A study was conducted to evaluate the properties and processes influencing the rate and magnitude of volume decrease and strength gain for oil sand fine tailings resulting from a change in bitumen extraction process (caustic versus non-caustic) and the effect of adding a coagulant to caustic fine tailings.
Laboratory flume deposition tests were carried out with the objective to hydraulically deposit oil sand tailings and compare the effects of extraction processes on the nature of beach deposits in terms of geometry, particle size distribution, and density. A good correlation exists between flume deposition tests results using oil sand tailings and the various other tailings materials. These comparisons show the reliability and effectiveness of flume deposition tests in terms of establishing general relationships and can serve as a guide to predict beach slopes.
Fine tailings were collected from the various flume tests and a comprehensive description of physical and chemical characteristics of the different fine tailings was carried out. The characteristics of the fine tailings is presented in terms of index properties, mineralogy, specific surface area, water chemistry, liquid limits, particle size distribution and structure. The influence of these fundamental properties on the compressibility, hydraulic conductivity and shear strength properties of the fine tailings was assessed. Fourteen two meter and one meter high standpipe tests were instrumented to monitor the rate and magnitude of self-weight consolidation of the different fine tailings materials. Consolidation tests using slurry consolidometers were carried out to determine consolidation properties, namely compressibility and hydraulic conductivity, as well as the effect of adding a coagulant (calcium sulphate [CaSO4]) to caustic fine tailings. The thixotropic strength of the fine tailings was examined by measuring shear strength over time using a vane shear apparatus.
A difference in water chemistry during bitumen extraction was concluded to be the cause of substantial differences in particle size distributions and degree of dispersion of the comparable caustic and non-caustic fine tailings. The degree of dispersion was consistent with predictions for dispersed clays established by the sodium adsorption ratio (SAR) values for these materials. The biggest advantage of non-caustic fine tailings and treating caustic fine tailings with coagulant is an increased initial settlement rate and slightly increased hydraulic conductivity at higher void ratios. Thereafter, compressibility and hydraulic conductivity are governed by effective stress. The chemical characteristics of fine tailings (water chemistry, degree of dispersion) do not have a significant impact on their compressibility behaviour and have only a small influence at high void ratio (low effective stress). Fine tailings from a caustic based extraction process had relatively higher shear strengths than comparable non-caustic fine tailings at equivalent void ratios. However, shear strength differences were small and the overall impact on consolidation behaviour, which also depends on compressibility and hydraulic conductivity, is not expected to be significant.
|
239 |
Comparison of geoenvironmental properties of caustic and noncaustic oil sand fine tailingsMiller, Warren Gregory Unknown Date
No description available.
|
240 |
Aufbereitung von Athabasca ÖlsandTewes, Elisabeth 26 June 2015 (has links)
Gegenstand dieser Arbeit ist die Entwicklung und Untersuchung eines Aufbereitungsprozesses zur Gewinnung von Bitumen aus kanadischem Athabasca Ölsand, der im Tagebau gewonnen wurde. Es wird ein mechanisch-thermisches Verfahren zur Fest-Flüssig-Trennung eingesetzt. Dabei handelt es sich um vier Schritte: (1) Suspendierung des Ölsandes mit den organischen Lösungsmitteln, Toluol und n-Heptan, (2) Filterkuchenbildung, (3) Waschung des Filterkuchens mit Wechsel der Waschflüssigkeiten (gradierte Waschung) und (4) Dampfbeaufschlagung. Der Prozess stellt eine Alternative zur herkömmlichen Heißwasser-extraktion des Ölsandes dar. Die Nachteile der Heißwasserextraktion sind ökologische Probleme, ein hoher Energie- und Frischwasserbedarf. Die Ziele des Alternativprozesses sind die Minimierung des Wasser- und Energiebedarfs, Vermeidung schädlicher Abfallstoffe sowie die Maximierung der Bitumenausbeute. Als Produkte sollen feststofffreies Bitumen und rückstandsfreier, deponierbarer Feststoff gewonnen werden.
|
Page generated in 0.0767 seconds