1 |
Interactions between olfactory bulb astrocytes, ensheathing cells and olfactory sensory neuronsGoodman, Melba Nadine January 1993 (has links)
No description available.
|
2 |
THE ROLE OF MACROPHAGES IN OLFACTORY NEUROGENESISBorders, Aaron S. 01 January 2007 (has links)
Olfactory sensory neurons (OSNs) undergo continual degeneration and replacement throughout life, a cycle that can be synchronized experimentally by performing olfactory bulbectomy (OBX). OBX induces apoptosis of mature OSNs, which is followed by an increase in the proliferation of progenitor basal cells. Macrophages, functionally diverse immune effector cells, phagocytose the apoptotic OSNs and regulate the proliferation of basal cells. This provides an advantageous environment to study how macrophages regulate neuronal death, proliferation, and replacement.
The purpose of this dissertation was to identify the cellular and molecular mechanisms by which macrophages regulate the degeneration/proliferation cycle of OSNs. Macrophages were selectively depleted using liposome-encapsulated clodronate (Lip-C). Intranasal and intravenous administration of Lip-C decreased the number of macrophages in the OE of sham and OBX mice by 38% and 35%, respectively, compared to mice treated with empty liposomes (Lip-O). Macrophage depletion significantly decreased OE thickness (22% and 21%, p<0.05), the number of mature OSNs (1.2- and 1.9-fold, p<0.05), and basal cell proliferation (7.6- and 3.8-fold, p<0.05) in sham and OBX mice, respectively, compared to Lip-O mice. Additionally, at 48 h following OBX, OSN apoptosis increased significantly (p<0.05) in the OE of Lip-C mice compared to Lip-O mice.
A microarray analysis was performed to identify the genomic changes underlying the cellular changes associated with macrophage depletion. There were 4,024 genes with either a significant interaction between group (Lip-C vs. Lip-O) and treatment (OBX vs. sham) or a significant main effect. There were a number of significantly regulated immune response and cytoskeletal genes, and genes encoding neurogenesis regulators and growth factors, most of which were expressed at lower levels in Lip-C mice compared to Lip-O mice. Sdf1, the ligand for the chemokine receptor Cxcr4 involved in leukocyte trafficking, axon guidance, and cell migration, was localized to macrophages on the protein level. Additionally, the microarray expression pattern of Hdgf, a growth factor that promotes neuronal survival and proliferation, was validated on the protein level using immunohistochemistry. HDGF appeared to be localized to basal cells and OSNs where it could act as a proliferative or survival factor whose expression is regulated in part by macrophages.
|
3 |
Axonal Regrowth of Olfactory Sensory Neurons After Chemical Ablation and Removal of Axonal Debris by MicrogliaChapman, Rudy 01 August 2020 (has links)
Olfactory sensory neurons (OSNs) are contained within the olfactory epithelium (OE) and are responsible for detecting odorant molecules in the air. The exposure of OSNs to the external environment is necessary for their function, but it also leaves them exposed to potentially harmful elements and thus results in a high turnover rate. Despite the high turnover, the olfactory sense is maintained throughout life through the division of a population of stem cells that produce new OSNs both during normal turnover and after an injury occurs in the OE. When new OSNs are born, they must extend axons from the OE to the olfactory bulb (OB) where they make specific synaptic contacts. To determine the timeline of axon extension in normal turnover and after a methimazole-induced injury, we used fate-tracing utilizing an inducible Cre-LoxP model in which a fluorescent reporter was expressed by neuronal precursors and subsequently used to track axonal growth as the OSNs matured. Our results show that axon extension in both conditions follow the same timeline. However, markers of synaptic connectivity in the OB were delayed after injury. The delay in synaptic connectivity was also corroborated with delays in olfactory behavior after injury, which took 40 days to recover to control levels. Additionally, we investigated the process of removal of axonal debris created after an injury. Immunohistochemical analysis after injury indicated upregulation of IBA1+ cells within the 3 olfactory nerve layer of the OB, suggesting a role of microglia in this process. These microglia also showed an activated morphology and some had very large cell bodies with multiple nuclei. Furthermore, qPCR analysis of post-injury OB tissue shows upregulation of the CD11b receptor that is expressed on microglia. Our results have also shown upregulation of components of the complement pathway after injury, which is suggestive of a mechanism that underlies axonal debris removal after injury in the OB. Taken together, these results shed light on the process by which the olfactory system is able to recover after injury and could lead to discovery of mechanisms that could translate to treatments for injuries in other areas of the nervous system.
|
4 |
Coding of tsetse repellents by olfactory sensory neurons: towards the improvement and the development of novel tsetse repellentsSouleymane, Diallo January 2021 (has links)
Philosophiae Doctor - PhD / Tsetse flies are the biological vectors of human and animal trypanosomiasis and hence representant medical and veterinary importance. The sense of smell plays a significant role in tsetse and its ecological interaction, such as finding blood meal source, resting, and larvicidal sites and for mating. Tsetse olfactory behaviour can be exploited for their management; however, olfactory studies in tsetse flies are still fragmentary. Here in my PhD thesis, using scanning electron microscopy, electrophysiology, behaviour, bioinformatics and molecular biology techniques, I have investigated tsetse flies (Glossina fuscipes fuscipes) olfaction using behaviourally well studied odorants, tsetse repellent by comparing with attractant odour. Insect olfaction is mediated by olfactory sensory neurons (OSNs), located in olfactory sensilla, which are cuticular structures exposed to the environment through pore and create a platform for chemical communication.
|
5 |
Effect of IP3R3 and NPY on Age-Related Declines in Olfactory Stem Cell ProliferationJia, Cuihong, Hegg, Colleen C. 01 January 2015 (has links)
Losing the sense of smell because of aging compromises health and quality of life. In the mouse olfactory epithelium, aging reduces the capacity for tissue homeostasis and regeneration. The microvillous cell subtype that expresses both inositol trisphosphate receptor type 3 (IP3R3) and the neuroproliferative factor neuropeptide Y (NPY) is critical for regulation of homeostasis, yet its role in aging is undefined. We hypothesized that an age-related decline in IP3R3 expression and NPY signaling underlie age-related homeostatic changes and olfactory dysfunction. We found a decrease in IP3R3+ and NPY+ microvillous cell numbers and NPY protein and a reduced sensitivity to NPY-mediated proliferation over 24months. However, in IP3R3-deficient mice, there was no further age-related reduction in cell numbers, proliferation, or olfactory function compared with wild type. The proliferative response was impaired in aged IP3R3-deficient mice when injury was caused by satratoxin G, which induces IP3R3-mediated NPY release, but not by bulbectomy, which does not evoke NPY release. These data identify IP3R3 and NPY signaling as targets for improving recovery following olfactotoxicant exposure.
|
6 |
Coding of tsetse repellents by olfactory sensory neurons: towards the improvement and the development of novel tsetse repellentsSouleymane, Diallo January 2020 (has links)
Philosophiae Doctor - PhD / Tsetse flies are the biological vectors of human and animal trypanosomiasis and hence representant medical and veterinary importance. The sense of smell plays a significant role in tsetse and its ecological interaction, such as finding blood meal source, resting, and larvicidal sites and for mating. Tsetse olfactory behaviour can be exploited for their management; however, olfactory studies in tsetse flies are still fragmentary. Here in my PhD thesis, using scanning electron microscopy, electrophysiology, behaviour, bioinformatics and molecular biology techniques, I have investigated tsetse flies (Glossina fuscipes fuscipes) olfaction using behaviourally well studied odorants, tsetse repellent by comparing with attractant odour. Insect olfaction is mediated by olfactory sensory neurons (OSNs), located in olfactory sensilla, which are cuticular structures exposed to the environment through pore and create a platform for chemical communication. In the sensilla shaft the dendrite of OSNs are housed, which are protected by called the sensillum lymph produced by support cells and contains a variety of olfactory proteins, including the odorant binding protein (OBP) and chemosensory proteins (CSP). While on the dendrite of OSNs are expressed olfactory receptors. In my PhD, studies I tried to decipher the sense of smell in tsetse fly. In the second chapter, I demonstrated that G. f. fuscipes is equipped with diverse olfactory sensilla, that various from basiconic, trichoid and coeloconic. I also demonstrated, there is shape, length, number difference between sensilla types and sexual dimorphism. There is a major difference between male and female, while male has the unique basiconic sensilla, club shaped found in the pits, which is absent from female pits. In my third chapter, I investigated the odorant receptors which are expressed on the dendrite of the olfactory sensory neurons (OSNs). G. f. fuscipes has 42 ORs, which were not functionally characterised. I used behaviourally well studied odorants, tsetse repellents, composed of four components blend. I demonstrated that tsetse repellent is also a strong antifeedant for both G. pallidipes and G. f. fuscipes using feeding bioassays as compared to the attractant odour, adding the value of tsetse repellent. However, the attractant odour enhanced the feeding index. Using DREAM (deorphanization of receptors based on expression alterations of mRNA levels). I found that in G. f. fuscipes, following a short in vivo exposure to the individual tsetse repellent component as well as an attractant volatile chemical, OSNs that respond to these compounds altered their mRNA expression in two opposite direction, significant downregulation and upregulation in their number of transcripts corresponding to the OR that they expressed and interacted with odorant. Also, I found that the odorants with opposite valence already segregate distinctly at the cellular and molecular target at the periphery, which is the reception of odorants by OSNs, which is the basis of sophisticated olfactory behaviour. Deorphanization of ORs in none model insect is a challenge, here by combining DREAM with molecular dynamics, as docking score, physiology and homology modelling with Drosophila a well-studied model insects, I was able to predict putative receptors of the tsetse repellent components and an attractant odour. However, many ORs were neutral, showing they were not activated by the odorants, demonstrating the selectivity of the technique as well as the receptors. In my fourth chapter, I investigated the OBPs structures and their interaction with odorants molecules. I demonstrated that OBPs are expressed both in the antenna, as well as in other tissues, such as legs. I also demonstrated that there are variations in the expression of OBPs between tissues as well as sexes. I also demonstrated that odorants induced a fast alteration in OBP mRNA expression, some odorants induced a decrease in the transcription of genes corresponding to the activated OBP and others increased the expression by many fold in OBPs in live insect, others were neutral after 5 hours of exposure. Moreover, with subsequent behavioural data showed that the behavioural response of G. f. fuscipes toward 1-octen-3-ol decreased significantly when 1-octen-3-ol putative OBPs were silenced with feeding of double-stranded RNA (dsRNA). In summary, our finding whereby odorant exposure affects the OBPs mRNA, their physiochemical properties and the silencing of these OBPs affected the behavioural response demonstrate that the OBPs are involved in odour detection that affect the percept of the given odorant. The expression of OBPs in olfactory tissues, antenna and their interaction with odorant and their effect on behavioural response when silenced shows their direct involvement in odour detection and reception. Furthermore, their expression in other tissues such as legs indicates they might also have role in other physiological functions, such as taste.
|
7 |
Coding of tsetse repellents by olfactory sensory neurons: towards the improvement and the development of novelSouleymane, Diallo January 2020 (has links)
Philosophiae Doctor - PhD / Tsetse flies are the biological vectors of human and animal trypanosomiasis and hence representant medical and veterinary importance. The sense of smell plays a significant role in tsetse and its ecological interaction, such as finding blood meal source, resting, and larvicidal sites and for mating. Tsetse olfactory behaviour can be exploited for their management; however, olfactory studies in tsetse flies are still fragmentary. Here in my PhD thesis, using scanning electron microscopy, electrophysiology, behaviour, bioinformatics and molecular biology techniques, I have investigated tsetse flies (Glossina fuscipes fuscipes) olfaction using behaviourally well studied odorants, tsetse repellent by comparing with attractant odour. Insect olfaction is mediated by olfactory sensory neurons (OSNs), located in olfactory sensilla, which are cuticular structures exposed to the environment through pore and create a platform for chemical communication. In the sensilla shaft the dendrite of OSNs are housed, which are protected by called the sensillum lymph produced by support cells and contains a variety of olfactory proteins, including the odorant binding protein (OBP) and chemosensory proteins (CSP). While on the dendrite of OSNs are expressed olfactory receptors. In my PhD, studies I tried to decipher the sense of smell in tsetse fly. In the second chapter, I demonstrated that G. f. fuscipes is equipped with diverse olfactory sensilla, that various from basiconic, trichoid and coeloconic. I also demonstrated, there is shape, length, number difference between sensilla types and sexual dimorphism. There is a major difference between male and female, while male has the unique basiconic sensilla, club shaped found in the pits, which is absent from female pits. In my third chapter, I investigated the odorant receptors which are expressed on the dendrite of the olfactory sensory neurons (OSNs). G. f. fuscipes has 42 ORs, which were not functionally characterised. I used behaviourally well studied odorants, tsetse repellents, composed of four components blend. I demonstrated that tsetse repellent is also a strong antifeedant for both G. pallidipes and G. f. fuscipes using feeding bioassays as compared to the attractant odour, adding the value of tsetse repellent. However, the attractant odour enhanced the feeding index. Using DREAM (deorphanization of receptors based on expression alterations of mRNA levels). I found that in G. f. fuscipes, following a short in vivo exposure to the individual tsetse repellent component as well as an attractant volatile chemical, OSNs that respond to these compounds altered their mRNA expression in two opposite direction, significant downregulation and upregulation in their number of transcripts corresponding to the OR that they expressed and interacted with odorant. Also, I found that the odorants with opposite valence already segregate distinctly at the cellular and molecular target at the periphery, which is the reception of odorants by OSNs, which is the basis of sophisticated olfactory behaviour. Deorphanization of ORs in none model insect is a challenge, here by combining DREAM with molecular dynamics, as docking score, physiology and homology modelling with Drosophila a well-studied model insects, I was able to predict putative receptors of the tsetse repellent components and an attractant odour. However, many ORs were neutral, showing they were not activated by the odorants, demonstrating the selectivity of the technique as well as the receptors. In my fourth chapter, I investigated the OBPs structures and their interaction with odorants molecules. I demonstrated that OBPs are expressed both in the antenna, as well as in other tissues, such as legs. I also demonstrated that there are variations in the expression of OBPs between tissues as well as sexes. I also demonstrated that odorants induced a fast alteration in OBP mRNA expression, some odorants induced a decrease in the transcription of genes corresponding to the activated OBP and others increased the expression by many fold in OBPs in live insect, others were neutral after 5 hours of exposure. Moreover, with subsequent behavioural data showed that the behavioural response of G. f. fuscipes toward 1-octen-3-ol decreased significantly when 1-octen-3-ol putative OBPs were silenced with feeding of double-stranded RNA (dsRNA). In summary, our finding whereby odorant exposure affects the OBPs mRNA, their physiochemical properties and the silencing of these OBPs affected the behavioural response demonstrate that the OBPs are involved in odour detection that affect the percept of the given odorant. The expression of OBPs in olfactory tissues, antenna and their interaction with odorant and their effect on behavioural response when silenced shows their direct involvement in odour detection and reception. Furthermore, their expression in other tissues such as legs indicates they might also have role in other physiological functions, such as taste.
|
Page generated in 0.0839 seconds