Spelling suggestions: "subject:"fineline handwritten"" "subject:"hineline handwritten""
1 |
Um estudo empírico sobre classificação de símbolos matemáticos manuscritos / An empirical study on handwritten mathematical symbol classicationOliveira, Marcelo Valentim de 25 August 2014 (has links)
Um importante problema na área de reconhecimento de padrões é o reconhecimento de textos manuscritos. O problema de reconhecimento de expressões matemáticas manuscritas é um caso particular, que vem sendo tratado por décadas. Esse problema é considerado desafiador devido à grande quantidade de possíveis tipos de símbolos, às variações intrínsecas da escrita, e ao complexo arranjo bidimensional dos símbolos na expressão. Neste trabalho adotamos o problema de reconhecimento de símbolos matemáticos manuscritos para realizar um estudo empírico sobre o comportamento de classificadores multi-classes. Examinamos métodos básicos de aprendizado para classificação multi-classe, especialmente as abordagens um-contra-todos e todos-contra-todos de decomposição de um problema multi-classe em problemas de classificação binária. Para decompor o problema em subproblemas menores, propomos também uma abordagem que utiliza uma árvore de decisão para dividir hierarquicamente o conjunto de dados, de modo que cada subconjunto resultante corresponda a um problema mais simples de classificação. Esses métodos são examinados usando-se como classificador base os modelos de classificação vizinhos-mais-próximos e máquinas de suporte vetorial (usando a abordagem um-contra-todos para combinar os classificadores binários). Para classificação, os símbolos são representados por um conjunto de características conhecido na literatura por HBF49 e que foi proposto recentemente especificamente para problemas de reconhecimento de símbolos on-line. Experimentos foram realizados para avaliar a acurácia dos classificadores, o desempenho dos classificadores para número crescente de classes, tempos de treinamento e teste, e uso de diferentes sub-conjuntos de características. Este trabalho inclui uma descrição dos fundamentos utilizados, detalhes do pré-processamento e extração de características para representação dos símbolos, e uma exposição e discussão sobre o estudo empírico realizado. Os dados adicionais que foram coletados para os experimentos serão publicamente disponibilizados. / An important problem in the eld of Pattern Recognition is handwriting recognition. The problem of handwritten mathematical expression recognition is a particular case that is being studied since decades. This is considered a challenging problem due to the large number of possible mathematical symbols, the intrinsic variation of handwriting, and the complex 2D arrangement of symbols within expressions. In this work we adopt the problem of recognition of online mathematical symbols in order to perform an empirical study on the behavior of multi-class classiers. We examine basic methods for multi-class classification, specially the one-versus-all and all-versus-all approaches for decomposing multi-class problems into a set of binary classification problems. To decompose the problem into smaller ones, we also propose an approach that uses a decision tree to hierarchically divide the whole dataset into subsets, in such a way that each subset corresponds to a simpler classification problem. These methods are examined using the k-nearest-neighbor and, accompanied by the oneversus-all approach, the support vector machine models as base classiers. For classification, symbols are represented through a set of features known in the literature as HBF49 and which has been proposed recently specially for the problem of recognition of online symbols. Experiments were performed in order to evaluate classier accuracy, the performance of the classiers as the number of classes are increased, training and testing time, and the use of dierent subsets of the whole set of features. This work includes a description of the needed background, details of the pre-processing and feature extraction techniques for symbol representation, and an exposition and discussion of the empirical studies performed. The data additionally collected for the experiments will be made publicly available.
|
2 |
Um estudo empírico sobre classificação de símbolos matemáticos manuscritos / An empirical study on handwritten mathematical symbol classicationMarcelo Valentim de Oliveira 25 August 2014 (has links)
Um importante problema na área de reconhecimento de padrões é o reconhecimento de textos manuscritos. O problema de reconhecimento de expressões matemáticas manuscritas é um caso particular, que vem sendo tratado por décadas. Esse problema é considerado desafiador devido à grande quantidade de possíveis tipos de símbolos, às variações intrínsecas da escrita, e ao complexo arranjo bidimensional dos símbolos na expressão. Neste trabalho adotamos o problema de reconhecimento de símbolos matemáticos manuscritos para realizar um estudo empírico sobre o comportamento de classificadores multi-classes. Examinamos métodos básicos de aprendizado para classificação multi-classe, especialmente as abordagens um-contra-todos e todos-contra-todos de decomposição de um problema multi-classe em problemas de classificação binária. Para decompor o problema em subproblemas menores, propomos também uma abordagem que utiliza uma árvore de decisão para dividir hierarquicamente o conjunto de dados, de modo que cada subconjunto resultante corresponda a um problema mais simples de classificação. Esses métodos são examinados usando-se como classificador base os modelos de classificação vizinhos-mais-próximos e máquinas de suporte vetorial (usando a abordagem um-contra-todos para combinar os classificadores binários). Para classificação, os símbolos são representados por um conjunto de características conhecido na literatura por HBF49 e que foi proposto recentemente especificamente para problemas de reconhecimento de símbolos on-line. Experimentos foram realizados para avaliar a acurácia dos classificadores, o desempenho dos classificadores para número crescente de classes, tempos de treinamento e teste, e uso de diferentes sub-conjuntos de características. Este trabalho inclui uma descrição dos fundamentos utilizados, detalhes do pré-processamento e extração de características para representação dos símbolos, e uma exposição e discussão sobre o estudo empírico realizado. Os dados adicionais que foram coletados para os experimentos serão publicamente disponibilizados. / An important problem in the eld of Pattern Recognition is handwriting recognition. The problem of handwritten mathematical expression recognition is a particular case that is being studied since decades. This is considered a challenging problem due to the large number of possible mathematical symbols, the intrinsic variation of handwriting, and the complex 2D arrangement of symbols within expressions. In this work we adopt the problem of recognition of online mathematical symbols in order to perform an empirical study on the behavior of multi-class classiers. We examine basic methods for multi-class classification, specially the one-versus-all and all-versus-all approaches for decomposing multi-class problems into a set of binary classification problems. To decompose the problem into smaller ones, we also propose an approach that uses a decision tree to hierarchically divide the whole dataset into subsets, in such a way that each subset corresponds to a simpler classification problem. These methods are examined using the k-nearest-neighbor and, accompanied by the oneversus-all approach, the support vector machine models as base classiers. For classification, symbols are represented through a set of features known in the literature as HBF49 and which has been proposed recently specially for the problem of recognition of online symbols. Experiments were performed in order to evaluate classier accuracy, the performance of the classiers as the number of classes are increased, training and testing time, and the use of dierent subsets of the whole set of features. This work includes a description of the needed background, details of the pre-processing and feature extraction techniques for symbol representation, and an exposition and discussion of the empirical studies performed. The data additionally collected for the experiments will be made publicly available.
|
3 |
Výzkum nových parametrů online písma u dětí s grafomotorickými obtížemi / Research of new online handwriting features in children with graphomotor difficultiesGavenčiak, Michal January 2021 (has links)
In the Czech Republic, there is currently no objective method to diagnose graphomotor difficulties in children. Ongoing research uses modern digitizers to capture the hand-writing process and quantify its parameters. The first goal of this thesis is to develop software tools to faciliate work with the collected data, such as database validation and writing exercise rating, done by specialists. Another goal of this thesis is to design new on-line handwriting parameters which are then to be analysed on a cohort of school children from 2nd to 4th class of primary school (n=239). The implementation of two desktop programs on the .NET platform is described, among three new quantifying parameters based on the principles of isochrony, two-dimensional cross-correlation, and geometrical centroid. All three parameters show significant correlation (r = [0,2; 0,3])with the HPSQ-C rating in 2nd- and 4th-graders and correlation (𝜌= [0,2; 0,5]) with specialist’s subjective scores in all children from the cohort. The analysis suggests children with graphomotor difficulties struggle with regulating handwriting speed and working memory.
|
4 |
On the use of a discriminant approach for handwritten word recognition based on bi-character models / Vers une approche discriminante pour la reconnaissance de mots manuscrits en-ligne utilisant des modèles de bi-caractèresPrum, Sophea 08 November 2013 (has links)
Avec l’avènement des dispositifs nomades tels que les smartphones et les tablettes, la reconnaissance automatique de l’écriture manuscrite cursive à partir d’un signal en ligne est devenue durant les dernières décennies un besoin réel de la vie quotidienne à l’ère numérique. Dans le cadre de cette thèse, nous proposons de nouvelles stratégies pour un système de reconnaissance de mots manuscrits en-ligne. Ce système se base sur une méthode collaborative segmentation/reconnaissance et en utilisant des analyses à deux niveaux : caractère et bi-caractères. Plus précisément, notre système repose sur une segmentation de mots manuscrits en graphèmes afin de créer un treillis à L niveaux. Chaque noeud de ce treillis est considéré comme un caractère potentiel envoyé à un moteur de Reconnaissance de Caractères Isolés (RCI) basé sur un SVM. Pour chaque noeud, ce dernier renvoie une liste de caractères associés à une liste d’estimations de probabilités de reconnaissance. Du fait de la grande diversité des informations résultant de la segmentation en graphèmes, en particulier à cause de la présence de morceaux de caractères et de ligatures, l’injection de chacun des noeuds du treillis dans le RCI engendre de potentielles ambiguïtés au niveau du caractère. Nous proposons de lever ces ambiguïtés en utilisant des modèles de bi-caractères, basés sur une régression logistique dont l’objectif est de vérifier la cohérence des informations à un niveau de reconnaissance plus élevé. Finalement, les résultats renvoyés par le RCI et l’analyse des modèles de bi-caractères sont utilisés dans la phase de décodage pour parcourir le treillis dans le but de trouver le chemin optimal associé à chaque mot dans le lexique. Deux méthodes de décodage sont proposées (recherche heuristique et programmation dynamique), la plus efficace étant basée sur de la programmation dynamique. / With the advent of mobile devices such as tablets and smartphones over the last decades, on-line handwriting recognition has become a very highly demanded service for daily life activities and professional applications. This thesis presents a new approach for on-line handwriting recognition. This approach is based on explicit segmentation/recognition integrated in a two level analysis system: character and bi-character. More specifically, our system segments a handwritten word in a sequence of graphemes to be then used to create a L-levels lattice of graphemes. Each node of the lattice is considered as a character to be submitted to a SVM based Isolated Character Recognizer (ICR). The ICR returns a list of potential character candidates, each of which is associated with an estimated recognition probability. However, each node of the lattice is a combination of various segmented graphemes. As a consequence, a node may contain some ambiguous information that cannot be handled by the ICR at character level analysis. We propose to solve this problem using "bi-character" models based on Logistic Regression, in order to verify the consistency of the information at a higher level of analysis. Finally, the recognition results provided by the ICR and the bi-character models are used in the word decoding stage, whose role is to find the optimal path in the lattice associated to each word in the lexicon. Two methods are presented for word decoding (heuristic search and dynamic programming), and dynamic programming is found to be the most effective.
|
Page generated in 0.0714 seconds