Spelling suggestions: "subject:"séparateurs à waste large"" "subject:"séparateurs à taste large""
1 |
Apprentissage à base de Noyaux Sémantiques pour le Traitement de Données TextuellesAseervatham, Sujeevan 12 December 2007 (has links) (PDF)
Depuis le début des années 80, les méthodes statistiques et, plus spécifiquement, les méthodes d'apprentissage appliquées au traitement de données textuelles connaissent un intérêt grandissant. Cette tendance est principalement due au fait que la taille des corpus est en perpétuelle croissance. Ainsi, les méthodes utilisant le travail d'experts sont devenues des processus coûteux perdant peu à peu de leur popularité au profit des systèmes d'apprentissage.<br />Dans le cadre de cette thèse, nous nous intéressons principalement à deux axes.<br />Le premier axe porte sur l'étude des problématiques liées au traitement de données textuelles structurées par des approches à base de noyaux. Nous présentons, dans ce contexte, un noyau sémantique pour les documents structurés en sections notamment sous le format XML. Le noyau tire ses informations sémantiques à partir d'une source de connaissances externe, à savoir un thésaurus. Notre noyau a été testé sur un corpus de documents médicaux avec le thésaurus médical UMLS. Il a été classé, lors d'un challenge international de catégorisation de documents médicaux, parmi les 10 méthodes les plus performantes sur 44. <br />Le second axe porte sur l'étude des concepts latents extraits par des méthodes statistiques telles que l'analyse sémantique latente (LSA). Nous présentons, dans une première partie, des noyaux exploitant des concepts linguistiques provenant d'une source externe et des concepts statistiques issus de la LSA. Nous montrons qu'un noyau intégrant les deux types de concepts permet d'améliorer les performances. Puis, dans un deuxième temps, nous présentons un noyau utilisant des LSA locaux afin d'extraire des concepts latents permettant d'obtenir une représentation plus fine des documents.
|
2 |
Détection de zones brûlées après un feu de forêt à partir d'une seule image satellitaire SPOT 5 par techniques SVMZammit, Olivier 26 September 2008 (has links) (PDF)
Cette thèse aborde le problème de cartographie de zones brûlées à partir d'images satellitaires haute résolution. Nos modèles reposent sur le traitement d'une seule image SPOT 5, acquise après le feu afin de détecter automatiquement les zones brûlées.<br />Le modèle est fondé sur les Séparateurs à Vaste Marge (SVM), une technique de classification supervisée qui a démontré une meilleure précision et une meilleure capacité de généralisation que les algorithmes de classification plus traditionnels. Concernant notre problème de détection, les différentes zones brûlées possèdent des caractéristiques spectrales assez similaires, au contraire des zones non brûlées (végétation, routes, eau, zones urbaines, nuage, ombre...) dont les caractéristiques spectrales varient énormément. Nous proposons donc d'utiliser les One-Class SVM, une technique qui dérive des SVM mais qui n'utilise que des exemples de pixels brûlés pour les phases d'apprentissage et de classification.<br />Afin de prendre en compte l'information spatiale de l'image, l'algorithme OC-SVM est utilisé comme une technique de croissance de régions, ce qui permet de diminuer les fausses alarmes et d'améliorer les contours des zones brûlées.<br />De plus, la base d'exemple de pixels brûlés nécessaire à l'apprentissage des techniques SVM est déterminée automatiquement à partir de l'histogramme de l'image.<br />Finalement, la méthode de classification proposée est testée sur plusieurs images satellitaires afin de valider son efficacité selon le type de végétation et la surface des zones brûlées. Les zones brûlées obtenues sont comparées aux vérités de terrain fournies par le CNES, Infoterra France, le SERTIT, les Services Départementaux d'Incendies et de Secours ou l'Office National des Forêts.
|
3 |
Pénalités hiérarchiques pour l'ntégration de connaissances dans les modèles statistiquesSzafranski, Marie 21 November 2008 (has links) (PDF)
L'apprentissage statistique vise à prédire, mais aussi analyser ou interpréter un phénomène. Dans cette thèse, nous proposons de guider le processus d'apprentissage en intégrant une connaissance relative à la façon dont les caractéristiques d'un problème sont organisées. Cette connaissance est représentée par une structure arborescente à deux niveaux, ce qui permet de constituer des groupes distincts de caractéristiques. Nous faisons également l'hypothèse que peu de (groupes de) caractéristiques interviennent pour discriminer les observations. L'objectif est donc de faire émerger les groupes de caractéristiques pertinents, mais également les caractéristiques significatives associées à ces groupes. Pour cela, nous utilisons une formulation variationnelle de type pénalisation adaptative. Nous montrons que cette formulation conduit à minimiser un problème régularisé par une norme mixte. La mise en relation de ces deux approches offre deux points de vues pour étudier les propriétés de convexité et de parcimonie de cette méthode. Ces travaux ont été menés dans le cadre d'espaces de fonctions paramétriques et non paramétriques. L'intérêt de cette méthode est illustré sur des problèmes d'interfaces cerveaux-machines.
|
4 |
Apport de l'imagerie multi et hyperspectrale pour l'évaluation de la pigmentation de la peauPrigent, Sylvain 30 November 2012 (has links) (PDF)
L'objectif principal de ce travail de thèse est de développer un score mesurant la pigmentation de la peau à partir d'images spectrales. L'objectif final est de construire un outil plus objectif et au moins aussi performant que les outils cliniques, dans l'évaluation de l'effet des traitements agissant sur l'hyper-pigmentation de la peau. Cet outil a pour vocation à être utilisé dans des essais cliniques. Le travail se focalise sur le mélasma qui est une pathologie pigmentaire symétrique due principalement à des troubles hormonaux et à l'exposition au soleil. Pour évaluer la sévérité de cette pathologie et son évolution sous traitements, deux types de classification sont proposés. Le premier concerne une classification binaire entre tissu sain et tissu pathologique. Le second consiste à définir différents niveaux de sévérité pour les tissus pathologiques. La première classification s'inscrit dans le cadre de la classification dans des espaces de grande dimension. Un outil de réduction de dimension associé à un algorithme de classification par séparateurs à vaste marge a été développé. Cet outil est issu d'une comparaison des techniques de poursuite de projection et de séparation de sources, ainsi que des méthodes d'automatisation pour estimer la dimension de l'espace d'arrivée, et l'estimation des différents groupes de bandes spectrales dans le cas de la poursuite de projection. La seconde classification vise à mesurer un critère clinique de sévérité de l'hyperpigmentation. Ce critère clinique comprend trois composantes : surface, contraste et homogénéïté. La composante de surface découle de la classification entre tissus sains et tissus pathologiques. Une méthodologie d'estimation de combinaison de bandes spectrales tenant conjointement compte de la signature spectrale et de la cinétique de l'effet d'un traitement sur toute une étude clinique est proposée afin d'obtenir un critère de contraste. Pour obtenir un critère d'homogénéïté spatiale, une approche fondée sur l'analyse multi-échelles de champs gaussiens et issue de la méthodologie du "statistical parametric mapping" est employée entre deux dates d'acquisition.
|
5 |
Développement de nouveaux plans d'expériences uniformes adaptés à la simulation numérique en grande dimensionSantiago, Jenny 04 February 2013 (has links)
Cette thèse propose une méthodologie pour des études en simulation numérique en grande dimension. Elle se décline en différentes étapes : construction de plan d'expériences approprié, analyse de sensibilité et modélisation par surface de réponse. Les plans d'expériences adaptés à la simulation numérique sont les "Space Filling Designs", qui visent à répartir uniformément les points dans l'espace des variables d'entrée. Nous proposons l'algorithme WSP pour construire ces plans, rapidement, avec de bons critères d'uniformité, même en grande dimension. Ces travaux proposent la construction d'un plan polyvalent, qui sera utilisé pour les différentes étapes de l'étude : de l'analyse de sensibilité aux surfaces de réponse. L'analyse de sensibilité sera réalisée avec une approche innovante sur les points de ce plan, pour détecter le sous-ensemble de variables d'entrée réellement influentes. Basée sur le principe de la méthode de Morris, cette approche permet de hiérarchiser les variables d'entrée selon leurs effets. Le plan initial est ensuite "replié" dans le sous-espace des variables d'entrée les plus influentes, ce qui nécessite au préalable une étude pour vérifier l'uniformité de la répartition des points dans l'espace réduit et ainsi détecter d'éventuels amas et/ou lacunes. Ainsi, après réparation, ce plan est utilisé pour l'étape ultime : étude de surfaces de réponse. Nous avons alors choisi d'utiliser l'approche des Support Vector Regression, indépendante de la dimension et rapide dans sa mise en place. Obtenant des résultats comparables à l'approche classique (Krigeage), cette technique semble prometteuse pour étudier des phénomènes complexes en grande dimension. / This thesis proposes a methodology of study in numeric simulation for high dimensions. There are several steps in this methodology : setting up an experimental design, performing sensitivity analysis, then using response surface for modelling. In numeric simulation, we use a Space Filling Design that scatters the points in the entire domain. The construction of an experimental design in high dimensions must be efficient, with good uniformity properties. Moreover, this construction must be fast. We propose using the WSP algorithm to construct such an experimental design. This design is then used in all steps of the methodology, making it a versatile design, from sensitivity analysis to modelling. A sensitivity analysis allows identifying the influent factors. Adapting the Morris method principle, this approach classifies the inputs into three groups according to their effects. Then, the experimental design is folded over in the subspace of the influent inputs. This action can modify the uniformity properties of the experimental design by creating possible gaps and clusters. So, it is necessary to repair it by removing clusters and filling gaps. We propose a step-by-step approach to offer suitable repairing for each experimental design. Then, the repaired design is used for the final step: modelling from the response surface. We consider a Support Vector Machines method because dimension does not affect the construction. Easy to construct and with good results, similar to the results obtained by Kriging, the Support Vector Regression method is an alternative method for the study of complex phenomena in high dimensions.
|
6 |
Aide au diagnostic du cancer de la prostate par IRM multi-paramétrique : une approche par classification supervisée / Computer-aided diagnosis of prostate cancer using multi-parametric MRI : a supervised learning approachNiaf, Émilie 10 December 2012 (has links)
Le cancer de la prostate est la deuxième cause de mortalité chez l’homme en France. L’IRM multiparamétrique est considérée comme la technique la plus prometteuse pour permettre une cartographie du cancer, ouvrant la voie au traitement focal, alternatif à la prostatectomie radicale. Néanmoins, elle reste difficile à interpréter et est sujette à une forte variabilité inter- et intra-expert, d’où la nécessité de développer des systèmes experts capables d’aider le radiologue dans son diagnostic. Nous proposons un système original d’aide au diagnostic (CAD) offrant un second avis au radiologue sur des zones suspectes pointées sur l’image. Nous évaluons notre système en nous appuyant sur une base de données clinique de 30 patients, annotées de manière fiable et exhaustive grâce à l’analyse des coupes histologiques obtenues par prostatectomie. Les performances mesurées dans des conditions cliniques auprès de 12 radiologues, sans et avec notre outil, démontrent l’apport significatif de ce CAD sur la qualité du diagnostic, la confiance des radiologues et la variabilité inter-expert. La création d’une base de corrélations anatomo-radiologiques est une tâche complexe et fastidieuse. Beaucoup d’études n’ont pas d’autre choix que de s’appuyer sur l’analyse subjective d’un radiologue expert, entâchée d’incertitude. Nous proposons un nouveau schéma de classification, basé sur l’algorithme du séparateur à vaste marge (SVM), capable d’intégrer, dans la fonction d’apprentissage, l’incertitude sur l’appartenance à une classe (ex. sain/malin) de certains échantillons de la base d’entraînement. Les résultats obtenus, tant sur des exemples simulés que sur notre base de données cliniques, démontrent le potentiel de ce nouvel algorithme, en particulier pour les applications CAD, mais aussi de manière plus générale pour toute application de machine learning s’appuyant sur un étiquetage quantitatif des données / Prostate cancer is one of the leading cause of death in France. Multi-parametric MRI is considered the most promising technique for cancer visualisation, opening the way to focal treatments as an alternative to prostatectomy. Nevertheless, its interpretation remains difficult and subject to inter- and intra-observer variability, which motivates the development of expert systems to assist radiologists in making their diagnosis. We propose an original computer-aided diagnosis system returning a malignancy score to any suspicious region outlined on MR images, which can be used as a second view by radiologists. The CAD performances are evaluated based on a clinical database of 30 patients, exhaustively and reliably annotated thanks to the histological ground truth obtained via prostatectomy. Finally, we demonstrate the influence of this system in clinical condition based on a ROC analysis involving 12 radiologists, and show a significant increase of diagnostic accuracy, rating confidence and a decrease in inter-expert variability. Building an anatomo-radiological correlation database is a complex and fastidious task, so that numerous studies base their evaluation analysis on the expertise of one experienced radiologist, which is thus doomed to contain uncertainties. We propose a new classification scheme, based on the support vector machine (SVM) algorithm, which is able to account for uncertain data during the learning step. The results obtained, both on toy examples and on our clinical database, demonstrate the potential of this new approach that can be extended to any machine learning problem relying on a probabilitic labelled dataset
|
7 |
Large scale support vector machines algorithms for visual classification / Algorithmes de SVM pour la classification d'images à grande échelleDoan, Thanh-Nghi 07 November 2013 (has links)
Nous présentons deux contributions majeures : 1) une combinaison de plusieurs descripteurs d’images pour la classification à grande échelle, 2) des algorithmes parallèles de SVM pour la classification d’images à grande échelle. Nous proposons aussi un algorithme incrémental et parallèle de classification lorsque les données ne peuvent plus tenir en mémoire vive. / We have proposed a novel method of combination multiple of different features for image classification. For large scale learning classifiers, we have developed the parallel versions of both state-of-the-art linear and nonlinear SVMs. We have also proposed a novel algorithm to extend stochastic gradient descent SVM for large scale learning. A class of large scale incremental SVM classifiers has been developed in order to perform classification tasks on large datasets with very large number of classes and training data can not fit into memory.
|
8 |
Reconnaissance d’activités humaines à partir de séquences vidéo / Human activity recognition from video sequencesSelmi, Mouna 12 December 2014 (has links)
Cette thèse s’inscrit dans le contexte de la reconnaissance des activités à partir de séquences vidéo qui est une des préoccupations majeures dans le domaine de la vision par ordinateur. Les domaines d'application pour ces systèmes de vision sont nombreux notamment la vidéo surveillance, la recherche et l'indexation automatique de vidéos ou encore l'assistance aux personnes âgées. Cette tâche reste problématique étant donnée les grandes variations dans la manière de réaliser les activités, l'apparence de la personne et les variations des conditions d'acquisition des activités. L'objectif principal de ce travail de thèse est de proposer une méthode de reconnaissance efficace par rapport aux différents facteurs de variabilité. Les représentations basées sur les points d'intérêt ont montré leur efficacité dans les travaux d'art; elles ont été généralement couplées avec des méthodes de classification globales vue que ses primitives sont temporellement et spatialement désordonnées. Les travaux les plus récents atteignent des performances élevées en modélisant le contexte spatio-temporel des points d'intérêts par exemple certains travaux encodent le voisinage des points d'intérêt à plusieurs échelles. Nous proposons une méthode de reconnaissance des activités qui modélise explicitement l'aspect séquentiel des activités tout en exploitant la robustesse des points d'intérêts dans les conditions réelles. Nous commençons par l'extractivité des points d'intérêt dont a montré leur robustesse par rapport à l'identité de la personne par une étude tensorielle. Ces primitives sont ensuite représentées en tant qu'une séquence de sac de mots (BOW) locaux: la séquence vidéo est segmentée temporellement en utilisant la technique de fenêtre glissante et chacun des segments ainsi obtenu est représenté par BOW des points d'intérêt lui appartenant. Le premier niveau de notre système de classification séquentiel hybride consiste à appliquer les séparateurs à vaste marge (SVM) en tant que classifieur de bas niveau afin de convertir les BOWs locaux en des vecteurs de probabilités des classes d'activité. Les séquences de vecteurs de probabilité ainsi obtenues sot utilisées comme l'entrées de classifieur séquentiel conditionnel champ aléatoire caché (HCRF). Ce dernier permet de classifier d'une manière discriminante les séries temporelles tout en modélisant leurs structures internes via les états cachés. Nous avons évalué notre approche sur des bases publiques ayant des caractéristiques diverses. Les résultats atteints semblent être intéressant par rapport à celles des travaux de l'état de l'art. De plus, nous avons montré que l'utilisation de classifieur de bas niveau permet d'améliorer la performance de système de reconnaissance vue que le classifieur séquentiel HCRF traite directement des informations sémantiques des BOWs locaux, à savoir la probabilité de chacune des activités relativement au segment en question. De plus, les vecteurs de probabilités ont une dimension faible ce qui contribue à éviter le problème de sur apprentissage qui peut intervenir si la dimension de vecteur de caractéristique est plus importante que le nombre des données; ce qui le cas lorsqu'on utilise les BOWs qui sont généralement de dimension élevée. L'estimation les paramètres du HCRF dans un espace de dimension réduite permet aussi de réduire le temps d'entrainement / Human activity recognition (HAR) from video sequences is one of the major active research areas of computer vision. There are numerous application HAR systems, including video-surveillance, search and automatic indexing of videos, and the assistance of frail elderly. This task remains a challenge because of the huge variations in the way of performing activities, in the appearance of the person and in the variation of the acquisition conditions. The main objective of this thesis is to develop an efficient HAR method that is robust to different sources of variability. Approaches based on interest points have shown excellent state-of-the-art performance over the past years. They are generally related to global classification methods as these primitives are temporally and spatially disordered. More recent studies have achieved a high performance by modeling the spatial and temporal context of interest points by encoding, for instance, the neighborhood of the interest points over several scales. In this thesis, we propose a method of activity recognition based on a hybrid model Support Vector Machine - Hidden Conditional Random Field (SVM-HCRF) that models the sequential aspect of activities while exploiting the robustness of interest points in real conditions. We first extract the interest points and show their robustness with respect to the person's identity by a multilinear tensor analysis. These primitives are then represented as a sequence of local "Bags of Words" (BOW): The video is temporally fragmented using the sliding window technique and each of the segments thus obtained is represented by the BOW of interest points belonging to it. The first layer of our hybrid sequential classification system is a Support Vector Machine that converts each local BOW extracted from the video sequence into a vector of activity classes’ probabilities. The sequence of probability vectors thus obtained is used as input of the HCRF. The latter permits a discriminative classification of time series while modeling their internal structures via the hidden states. We have evaluated our approach on various human activity datasets. The results achieved are competitive with those of the current state of art. We have demonstrated, in fact, that the use of a low-level classifier (SVM) improves the performance of the recognition system since the sequential classifier HCRF directly exploits the semantic information from local BOWs, namely the probability of each activity relatively to the current local segment, rather than mere raw information from interest points. Furthermore, the probability vectors have a low-dimension which prevents significantly the risk of overfitting that can occur if the feature vector dimension is relatively high with respect to the training data size; this is precisely the case when using BOWs that generally have a very high dimension. The estimation of the HCRF parameters in a low dimension allows also to significantly reduce the duration of the HCRF training phase
|
9 |
Apprentissage statistique pour le signal: applications aux interfaces cerveau-machineFlamary, Rémi 06 December 2011 (has links) (PDF)
Les Interfaces Cerveau-Machine (ICM) nécessitent l'utilisation de méthodes d'apprentissage statistique pour la reconnaissance de signaux. Dans cette thèse, nous proposons une approche générale permettant d'intégrer des connaissances a priori dans le processus d'apprentissage. Cette approche consiste à apprendre de manière jointe le classifieur et la représentation des données lors d'une optimisation unique. Nous nous sommes plus particulièrement intéressés à des problèmes de sélection de capteurs et proposons plusieurs termes de régularisation adaptés pour ces problèmes. Notre première contribution est une méthode d'apprentissage supervisé de filtres: le filtrage vaste marge. Un filtrage maximisant la marge entre les échantillons est appris et permet de s'adapter automatiquement aux caractéristiques des signaux tout en restant interprétable. Une application ICM et une extension 2D du filtrage a été réalisée. La seconde contribution est une méthode d'apprentissage multitâche parcimonieuse. Elle permet de sélectionner de manière jointe un ensemble de noyaux pertinents pour l'ensemble des tâches de classification. Des algorithmes efficaces ont été proposés pour résoudre le problème d'optimisation et des expérimentations numériques ont montré l'intérêt de l'approche. Finalement, la troisième contribution est une application de l'apprentissage multitâche parcimonieux sur un ensemble de jeux de données ICM. Un terme de régularisation plus général permettant de promouvoir une similarité entre classifieurs est également proposé. Les résultats numériques ont montré qu'une réduction importante du temps de calibration peut être obtenue grâce à l'apprentissage multitâche proposé.
|
10 |
Smart control of a soft robotic hand prosthesis / Contrôle intelligent d’une prothèse de main robotique soupleRubiano Fonseca, Astrid 09 December 2016 (has links)
Le sujet principal de cette thèse est le développement d’un contrôle commande intelligentpour une prothèse de main robotique avec des parties souples qui comporte: (i) uneinterface homme–machine permettant de contrôler notre prothèse, (ii) et des stratégiesde contrôle améliorant les performances de la main robotique. Notre approche tientcompte : 1. du développement d’une interaction intuitive entre l'homme et la prothèse facilitantl'utilisation de la main, d'un système d’interaction entre l’utilisateur et la mainreposant sur l'acquisition de signaux ElectroMyoGrammes superficiels (sEMG) aumoyen d'un dispositif placé sur l'avant-bras du patient. Les signaux obtenus sontensuite traités avec un algorithme basé sur l'intelligence artificielle, en vued'identifier automatiquement les mouvements désirés par le patient.2. du contrôle de la main robotique grâce à la détection du contact avec l’objet et de lathéorie du contrôle hybride.Ainsi, nous concentrons notre étude sur : (i) l’établissement d’une relation entre lemouvement du membre supérieur et les signaux sEMG, (ii) les séparateurs à vaste margepour classer les patterns obtenues à partir des signaux sEMG correspondant auxmouvements de préhension, (iii) le développement d'un système de reconnaissance depréhension à partir d'un dispositif portable MyoArmbandTM, (iv) et des stratégieshybrides de contrôle commande de force-position de notre main robotique souple. / The target of this thesis disertation is to develop a new Smart control of a soft robotic hand prosthesis for the soft robotic hand prosthesis called ProMain Hand, which is characterized by:(i) flexible interaction with grasped object, (ii) and friendly-intuitive interaction between human and robot hand. Flexible interaction results from the synergies between rigid bodies and soft bodies, and actuation mechanism. The ProMain hand has three fingers, each one is equipped with three phalanges: proximal, medial and distal. The proximal and medial are built with rigid bodies,and the distal is fabricated using a deformable material. The soft distal phalange has a new smart force sensor, which was created with the aim to detect contact and force in the fingertip, facilitating the control of the hand. The friendly intuitive human-hand interaction is developed to facilitate the hand utilization. The human-hand interaction is driven by a controller that uses the superficial electromyographic signals measured in the forearm employing a wearable device. The wearable device called MyoArmband is placed around the forearm near the elbow joint. Based on the signals transmitted by the wearable device, the beginning of the movement is automatically detected, analyzing entropy behavior of the EMG signals through artificial intelligence. Then, three selected grasping gesture are recognized with the following methodology: (i) learning patients entropy patterns from electromyographic signals captured during the execution of selected grasping gesture, (ii) performing a support vector machine classifier, using raw entropy data extracted in real time from electromyographic signals.
|
Page generated in 0.1297 seconds