Spelling suggestions: "subject:"opérateurs dde CALDERON"" "subject:"opérateurs dee CALDERON""
1 |
Contribution à l'étude de la diffraction des ondes électromagnétiques par des réseaux. Réflexions sur les méthodes existantes et sur leur extension aux milieux anisotropesTayeb, Gérard 05 December 1990 (has links) (PDF)
Il s'agit essentiellement d'une étude théorique et numérique de la diffraction d'une onde électromagnétique plane par des réseaux. Pour des matériaux isotropes, nous suggérons une amélioration de la "méthode différentielle", et nous présentons une "méthode de synthèse" dont l'idée est de représenter le champ diffracté par le champ émis par un ensemble de sources fictives convenablement choisies et situées au voisinage du profil du réseau. La "méthode de YASUURA", basée sur la décomposition du champ diffracté en ondes planes, se trouve être un cas particulier de cette méthode.<br /> Nous poursuivons par une étude de la propagation dans des milieux présentant une anisotropie diélectrique, en évoquant notamment les problèmes liés à la recherche des solutions élémentaires de l'équation de propagation (fonctions de GREEN). Cette étude est mise à profit pour traiter ensuite : des empilements de couches anisotropes, des réseaux anisotropes par la "méthode différentielle", puis des réseaux anisotropes de permittivité diagonale au moyen d'une "méthode intégrale".<br /> Un effort a été fait pour formuler les différentes méthodes utilisées de façon similaire : il s'agit de caractériser les champs diffractés par leur appartenance à des espaces adéquats. Ces espaces sont, selon les méthodes, décrits par des bases, des familles totales, ou bien à l'aide d'opérateurs ( "projecteurs de CALDERON").
|
2 |
Quelques problèmes en analyse harmonique non commutativeHong, Guixiang 29 September 2012 (has links) (PDF)
Cette thèse présente quelques résultats de la théorie des probabilités quantiques et de l'analyse harmonique non commutative. Elle est constituée de trois parties. La première partie démontre l'analogue non commutatif de l'inégalité de John-Nirenberg et la décomposition atomique pour les martingales non commutatives. Ces résultats étendent et améliorent ceux qui existent déjà, et correspondent exactement à ceux que l'on connaît dans le cas classique. La deuxième partie est consacrée à l'étude des espaces de Hardy à valeurs opérateurs via la méthode d'ondelettes. Il est montré que les espaces de Hardy définis par ondelettes coïncident avec ceux définis par les fonctions carrées de Littlewood-Paley et Lusin. Cette approche est similaire à celle du cas des martingales non commutatives, mais l'utilisation des outils de martingales en analyse harmonique permet une démonstration plus rapide. Dans la troisième partie, nous nous tournons vers des applications de la théorie bien établie des espaces de Hardy, c'est-à-dire des opérateurs de Calderón-Zygmund (OCZ pour abréviation) associés à des noyaux à valeurs matricielles. On obtient des estimations de type faible (1, 1) pour des OCZ dyadiques parfaites et des shifts de Haar annulateurs associés à des noyaux non commutatifs, ainsi que des estimations de type H1 → L1 pour des OCZ arbitaires d'après une décomposition d'une fonction en ligne/colonne. En conjonction avec L∞ → BMO, nous établissons certaines estimations de type Lp. Cette approche s'applique aussi à des paraproduits et des transformées de martingales avec des symboles et coefficients non commutatifs respectivement.
|
3 |
Quelques problèmes en analyse harmonique non commutative / Some problems on noncommutative harmonique analysisHong, Guixiang 29 September 2012 (has links)
Quelques problèmes en analyse harmonique non commutative / Some problems on noncommutative harmonique analysis
|
Page generated in 0.0549 seconds