• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 116
  • 65
  • 18
  • 16
  • 6
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 243
  • 84
  • 79
  • 74
  • 70
  • 53
  • 45
  • 43
  • 35
  • 35
  • 32
  • 29
  • 27
  • 27
  • 25
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

Zlepšení rozlišení pro vícečetné snímky stejné scény / Superresolution

Mezera, Lukáš January 2010 (has links)
Úkolem této diplomové práce je navrhnout vlastní metodu pro zvýšení rozlišení v obraze scény, pokud je k dispozici více snímků dané scény. V teoretické části diplomové práce jsou jako nejlepší metody pro zvýšení rozlišení v obraze vybrány ty, které jsou založeny na principech zpracování signálu. Dále jsou popsány základní požadavky metod pro zvýšení rozlišení v obraze při přítomnosti více snímků stejné scény a jejich typická struktura. Následuje stručný přehled těchto metod a jejich vzájemné porovnání podle optimálních kritérií. Praktická část diplomové práce se zabývá samotným návrhem metody pro zvýšení rozlišení v obraze, pokud je k dispozici více snímků této scény. První navržená metoda je naimplementována a otestována. Při testování této metody je však  zjištěna její špatná funkčnost pro snímky scény s nízkým rozlišením, které vznikly vzájemnou rotací. Z toho důvodu je navržena vylepšená metoda pro zvýšení rozlišení v obraze. Tato metoda využívá při svém výpočtu robustních technik. Díky tomu je již vylepšená metoda nezávislá na rotaci mezi snímky scény s nízkým rozlišením. I tato metoda je řádně otestována a její výsledky jsou porovnány s výsledky první navržené metody pro zvýšení rozlišení v obraze. V porovnání výpočetních časů je lepší první navrhovaná metoda, avšak její výsledky pro obrazy obsahující rotace nejsou kvalitní. Oproti tomu pro obrazy, které vznikly pouze posunem při snímání scény, jsou tyto výsledky velice dobré. Vylepšená metoda je tedy využitelná zejména pro obrazy obsahující rotace. V závěru této práce je ještě navrženo jedno vylepšení, které by mohlo zlepšit výsledky druhé navrhnuté metody pro zvýšení rozlišení v obraze scény.
242

Návrh nové metody pro stereovidění / Design of a New Method for Stereovision

Kopečný, Josef January 2008 (has links)
This thesis covers with the problems of photogrammetry. It describes the instruments, theoretical background and procedures of acquiring, preprocessing, segmentation of input images and of the depth map calculating. The main content of this thesis is the description of the new method of stereovision. Its algorithm, implementation and evaluation of experiments. The covered method belongs to correlation based methods. The main emphasis lies in the segmentation, which supports the depth map calculation.
243

Deep Convolutional Neural Networks for Real-Time Single Frame Monocular Depth Estimation

Schennings, Jacob January 2017 (has links)
Vision based active safety systems have become more frequently occurring in modern vehicles to estimate depth of the objects ahead and for autonomous driving (AD) and advanced driver-assistance systems (ADAS). In this thesis a lightweight deep convolutional neural network performing real-time depth estimation on single monocular images is implemented and evaluated. Many of the vision based automatic brake systems in modern vehicles only detect pre-trained object types such as pedestrians and vehicles. These systems fail to detect general objects such as road debris and roadside obstacles. In stereo vision systems the problem is resolved by calculating a disparity image from the stereo image pair to extract depth information. The distance to an object can also be determined using radar and LiDAR systems. By using this depth information the system performs necessary actions to avoid collisions with objects that are determined to be too close. However, these systems are also more expensive than a regular mono camera system and are therefore not very common in the average consumer car. By implementing robust depth estimation in mono vision systems the benefits from active safety systems could be utilized by a larger segment of the vehicle fleet. This could drastically reduce human error related traffic accidents and possibly save many lives. The network architecture evaluated in this thesis is more lightweight than other CNN architectures previously used for monocular depth estimation. The proposed architecture is therefore preferable to use on computationally lightweight systems. The network solves a supervised regression problem during the training procedure in order to produce a pixel-wise depth estimation map. The network was trained using a sparse ground truth image with spatially incoherent and discontinuous data and output a dense spatially coherent and continuous depth map prediction. The spatially incoherent ground truth posed a problem of discontinuity that was addressed by a masked loss function with regularization. The network was able to predict a dense depth estimation on the KITTI dataset with close to state-of-the-art performance.

Page generated in 0.0498 seconds