Spelling suggestions: "subject:"optar""
471 |
Central Nervous System Associations in Neurofibromatosis Type 1Lamvik, Kate K. 13 July 2007 (has links)
No description available.
|
472 |
Embedding fiber Bragg grating sensors through ultrasonic additive manufacturingSchomer, John J. 08 August 2017 (has links)
No description available.
|
473 |
An Experimental Study of Temperature Sensor Noise Analysis in Evaluating the Velocity of Single-Phase Air and Water FlowsNiehus, Mark T. 08 September 2008 (has links)
No description available.
|
474 |
Michelle Loftin Thesis Proper Format 12-3 AS.pdfMichelle Loftin (17592504) 03 January 2024 (has links)
<p dir="ltr">Papilledema is the swelling of the optic disc resulting from increased cranial pressure. The diagnosis of papilledema is important not only to treat pathologies of the eye, but it also can be an important indicator for underlying brain pathology since the subarachnoid space surrounding the optic nerve is contiguous with the brain. Therefore increased pressure from the brain from pathologies such as hydrocephalus can be transmitted to the posterior eye. To study papilledema, a reproducible post hemorrhagic hydrocephalic rat model was used to study the changes of the retina, optic disc and optic nerve when exposed to high intracranial pressure. Multiple changes were noted in the post hemorrhagic hydrocephalic model including decreased thickness of the ganglion cell complex, decreased retinal thickness in the periphery in females, increased retinal thickness close to the optic nerve in males, increased optic disc width and diameter along with a decrease number of retinal ganglion cells. These findings were similar to findings in human patients with papilledema. Therefore, future studies are indicated using the post hemorrhagic hydrocephalic rat model to further understand the mechanism of papilledema progression and the use of possible therapeutics.</p>
|
475 |
Time-to-Collision of Looming Spherical Objects: Tau RevisitedLorv, Bailey 10 1900 (has links)
<p>As an object approaches an observer’s eye, tau, defined as the inverse relative expansion rate of the object’s image on the retina (Lee, 1976) approximates time-to-collision (TTC). Many studies have suggested that human observers use TTC information, but evidence for the use of tau remains inconclusive. Here we present two studies that investigated the use of tau in object-motion and observer-motion situations. In Study I, we dissociated several monocular variables that potentially contributed to TTC perception, and found that participants were most sensitive to TTC information when performing a relative TTC estimation task; and less sensitive to non-time variables such as distance-to-collision, speed and object size. Additionally, when we manipulated sources of information to specify conflicting time-of-arrivals, TTC specified by tau was weighted more than TTC derived from distance and speed. Thus, we concluded that even in the presence of monocular depth information, observers strongly utilize tau when estimating TTC.</p> <p>In Study II, observers estimated TTC of a looming target in the presence or absence of background expansion. Results demonstrated that participants overestimated TTC in situations where the surroundings of the target’s contours expanded at a reduced rate. Moreover, simulated self-motion was unnecessary to induce this bias, as results were comparable in situations where this relative expansion was limited to the target’s immediate surroundings. Therefore, we also concluded that a relative tau variable, based on the relative rate of expansion, is utilized whenever expansion beyond the object’s immediate boundaries is less than the target’s absolute rate of expansion.</p> / Master of Science (MSc)
|
476 |
Lithium Niobate MEMS Device by Picosecond Laser MachiningHe, Yuan 10 1900 (has links)
<p> Lithium niobate has interesting characteristics such as the electro-optic effect, the acousto-optic effect, piezoelectricity and large nonlinear optical coefficients. Potential applications in MEMS field could be explored if microstructures are fabricated in lithium niobate substrates,. This thesis presents the fabrication and characterization of a lithium niobate MEMS device. As lithium niobate crystal is difficult to process using standard semiconductor techniques including both wet etching and dry etching, new methods are
required to process lithium niobate. In our project, picosecond laser pulses were chosen to
produce bridges on lithium niobate. Fabrication of grooves with high aspect ratio were attempted and grooves with clean morphology were obtained when laser pulses with low cutting speed, medium pulse energy, and large number of passes were employed. This shows picosecond laser machining is a viable method to process lithium niobate.</p> <p> Waveguides in Z cut lithium niobate crystal were fabricated using Ti-indiffusion techniques. After the fabrication of waveguides in lithium niobate, a SiO2 film with a thickness of 0.3μm was deposited as a buffer layer. Ti-Pt-Au electrodes for actuation function were then deposited through lift-off technique. Finally a bridge structure (80um in width and 600um in length) with a waveguide embedded in it was fabricated with picosecond laser. The insertion loss before and after laser machining was 6.99dB and 5.01dB respectively.</p> <p> Optical and electrical tests were performed in an effort to determine the resonance frequency of bridge. In the optical test, many bulk piezoelectric resonance peaks were presented in the frequency spectrum. After damping the vibration of substrate, these spikes disappeared and only a background noise with small spikes were obtained. As those small spikes are not reproducible, the optical test is not a viable method to determine resonance frequency of the bridge structure in our device. The electrical test was then carried out in a vacuum environment in order to find the resonance frequency. The spectrum presents a spike with large amplitude. However, the phase and amplitude of the spike remained the same when the vacuum condition was removed, which indicates the spike is not related to the resonance of the bridge. In summary, the resonance frequency of bridge structure could not be determined by these two approaches.</p> <p> Future work could involve directly investigating the material properties surrounding the machining region to see whether the piezoelectricity of the material has been damaged from laser ablation process. New laser machining process of lithium niobate may also need to be studied to avoid this damage to the substrate structure. Even though our device could not be driven to vibrate at its resonance frequency, it is worth making microstructures in lithium niobate substrates. The combination of optical, mechanical and electrical elements will make lithium niobate a great potential material for optical MEMS
applications.</p> / Thesis / Master of Applied Science (MASc)
|
477 |
Multimode Fabry-Perot Laser Diodes: Modeling and Simulation of Mode Partitioning Noise in Fibre-Optic Communication LinksRan, Mengyu 09 1900 (has links)
The FP multimode semiconductor laser has lightened up a new field of optical communication technology in the past two decades. Numerical modeling of its physical behaviours and transient response has been discussed previously in literature, mostly by constructing the multimode rate equations. Rate equations are very helpful in studying and predicting the average photon and carrier transient response and relaxation oscillation. However, their deficiency in statistical photon fluctuation limits the function of describing stochastic power shifted from main mode to other side modes. Therefore, a noise driven model with conjunction of optical fibre and photodiode is built to form an optical communication system in the simulation scope. The multimode nature of FP lasers causes several problems such as mode partitioning noise (MPN), intersymbol interference (ISI), and frequency chirping, among which mode partitioning noise is the most serious of the concern in this discussion. The stereotype analytical measurement of MPN power penalty is based on several assumptions on the received waveform shape and power distribution spectrum, which limits its fields of application and accuracy. This work develops a numerical
solution to power penalty due to MPN, and it can be employed to any multimode laser diode models regardless of the received signal shape and power distribution spectrum. In conclusion, the MPN power penalty is a significant profile of evaluating system perform in fibre-optic communication links. It highly depends on shape of power distribution spectrum, number of modes, length of fibre, and pattern of signal waveform. / Thesis / Master of Applied Science (MASc)
|
478 |
Investigating Evidence for a Kosterlitz-Thouless Transition in Fe/W(001) Ultrathin FilmsAtchison, Jordan January 2019 (has links)
The magnetic susceptibility of 3-4ML ultrathin Fe/W(001) films was measured in situ under ultrahigh vacuum using the surface magneto-optic Kerr effect (SMOKE). Susceptibility measurements indicate that Fe/W(001) is a 2DXY system, and therefore undergoes a finite-size Kosterlitz-Thouless (KT) transition at the critical temperature T_KT. The films were grown using molecular beam epitaxy (MBE) and were characterized using Auger electron spectroscopy (AES) and low-energy electron diffraction (LEED). Three distinct categories of susceptibility signals were observed, and are referred to as Type I, II, and III. The primary difference between these signals is the size of the imaginary susceptibility, which likely corresponds to dissipative effects such as domain wall motion. The critical behaviour of the susceptibility in the paramagnetic region is described in the theory by χ(T) ~exp〖〖(B/(T/T_KT-1) 〗^a)〗. A least-squares fit to this paramagnetic region from many independently grown films gives values of a=0.50±0.03 and B=3.48±0.16, which are in quantitative agreement with the KT theory. In comparison to 2nd order phase transitions, a power law fit to the paramagnetic region of the susceptibility yields an effective critical exponent of γ_eff≈3.7±0.7, which does not correspond to any known universality class. / Thesis / Master of Science (MSc) / The magnetic properties of atomically thin iron films, referred to as Fe/W(001), were investigated using the highly sensitive phenomenon known as the surface magneto-optic Kerr effect (SMOKE). Fe/W(001) films were grown using the well-developed technique known as molecular beam epitaxy (MBE), which involved a slow and controlled thermal evaporation of an iron source onto a tungsten substrate. Film thickness and uniformity were verified using Auger electron spectroscopy, and film structure was determined using low energy electron diffraction. Film growth and all subsequent measurements were performed in situ under ultrahigh vacuum (10-10 mbar) to limit surface contamination. Using SMOKE, the magnetic susceptibility of the Fe/W(001) films was measured as a function of temperature to look for evidence of a unique phase transition known as the Kosterlitz-Thouless (KT) transition. Fitting experimental susceptibility data to the theoretical model for the KT transition presented persuasive evidence that Fe/W(001) films undergo a KT transition.
|
479 |
Parameter Extraction for Behaviour Modeling of Single Mode Semiconductor Laser Transmitter in Intensity Modulated Direct Detection Fiber-Optic Communication SystemsHabibullah, Faisal 12 1900 (has links)
Intensity modulation direct detection (IMDD) transmission scheme has been the mainstay in optical communication ever since semiconductor lasers were put to use as the choice transmission sources. With the development of new improved laser types, this method will continue to dominate the third generation light wave networks where bit rates have steadily risen beyond 10Gbps mark. The main attraction of this scheme lies in its simplicity. With EDFA amplifiers providing a cost effective solution to the attenuation problem, long haul network capacity under the scheme has greatly increased. At the design stage of such systems, it is essential to accurately predict the behavior of each system component right from the laser transmitter up to the optical receiver under custom specific operating conditions and laser diodes are one of the key
components for a wide range of light wave communication systems. For this purpose, computer-aided simulation techniques based on behavioral models of laser diodes have been developed and validated for a variety of applications [4-8]. A ‘representative’ behavior model, which closely approximates the device’s actual physical model, is essential to the system designer. Unfortunately, the component vendor or manufacturer may not be able to provide all the information needed to predict such behavior. The only information that can be made available, are certain measured variables over a specified measurement range. The designer therefore, needs a tool to effectively convert this data into a useful model with sufficiently accurate parameters for predicting behavior. As the complexity of the model increases, more detailed knowledge of the laser is required and the computation time for system performance calculation increases. While
sophisticated models provide considerable insight into important characteristics of the
lasers, for system simulation purposes a relatively simple model is often adequate. In this
thesis we will propose a very robust and efficient procedure for estimating the modal
parameters and go on to propose a complete solution to the 0D laser model extending to
such domains as the below threshold dynamics and temperature effects. / Thesis / Master of Engineering (ME)
|
480 |
ANALYSIS AND DESIGN OF NONLINEAR FIBER OPTIC COMMUNICATION SYSTEMSBidaki, Elham January 2020 (has links)
Fiber-optic systems represent the backbone of the communication networks, carrying most of the world’s data traffic. The main bottleneck in today’s fiber-optic communication systems has roots in the inherent nonlinearity of the fiber. Hence, developing new transmission schemes that are compatible with the nonlinear behavior of the optical fiber has become necessary.
To utilize the full transmission capacity of an optical fiber, this thesis investigates two different techniques---compensation-based method and nonlinear Fourier transform (NFT).
For the purpose of suppressing the nonlinear distortion in real time, an optical back propagation (OBP) technique using Raman pumped dispersion compensating fibers (DCF). OBP, as an all-optical signal processing technique, can compensate for both intra- and inter-channel nonlinear impairments in real time in point-to-point systems as well as in optical networks. The proposed inline OBP module consists of an optical phase conjugator (OPC), amplifiers and a Raman pumped DCF. In order to suppress the nonlinear effects of the transmission fiber, the power in the OBP fiber should increase exponentially with distance. This can be approximately achieved by using Raman pumping of the backpropagation fiber. Simulation results show that this technique provides 7.7 dB performance improvement in Q-factor over conventional systems.
The second part of this thesis is dedicated to the NFT as a promising framework to exploit the inherent nonlinearity of optical fiber rather than treating it as an undesirable effect and using perturbation and approximation-based methods to mitigate it.
A novel multistage perturbation technique to realize the NFT as a cascade of linear discrete Fourier transforms is developed. The linear Fourier transform can be easily implemented in the optical domain using a time lens or discrete photonic components, which can be implemented in silicon photonics. The proposed technique provides a promising way to implement NFT in the optical domain, which will fully utilize the potential of NFT for wavelength-division multiplexed fiber-optic systems in the optical domain.
Moreover, a nonlinear frequency-division multiplexed (NFDM) transmission scheme with midpoint OPC is investigated. The proposed mid-OPC NFDM system offers a degree of freedom to have a flexible power normalization factor, P_n to minimize the signal-noise mixing in NFT processing for a specific launch power, resulting in significant system performance improvement up to 5.6 dB in Q-factor over conventional NFDM systems. Another advantage of the proposed scheme is that the mid-OPC NFDM system extends the transmission reach without having to increase the guard interval, which leads to higher spectral efficiency. / Thesis / Doctor of Philosophy (PhD)
|
Page generated in 0.0279 seconds