• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 57
  • 29
  • 7
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 129
  • 129
  • 31
  • 29
  • 24
  • 21
  • 20
  • 17
  • 16
  • 16
  • 13
  • 12
  • 12
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Analysis and Characterization of Fiber Nonlinearities with Deterministic and Stochastic Signal Sources

Lee, Jong-Hyung 07 March 2000 (has links)
In this dissertation, various analytical models to characterize fiber nonlinearities have been applied, and the ranges of validity of the models are determined by comparing with numerical results. First, the perturbation approach is used to solve the nonlinear Schrödinger equation, and its range of validity is determined by comparing to the split-step Fourier method. In addition, it is shown mathematically that the perturbation approach is equivalent to the Volterra series approach. Secondly, root-mean-square (RMS) widths both in the time domain and in the frequency domain are modeled. It is shown that there exists an optimal input pulse width to minimize output pulse width based on the derived RMS models, and the functional form of the minimum output pulse width is derived. The response of a fiber to a sinusoidally modulated input which models an alternating bit sequence is studied to see its utility in measuring system performance in the presence of the fiber nonlinearities. In a single channel system, the sinusoidal response shows a strong correlation with eye-opening penalty in the normal dispersion region over a wide range of parameters, but over a more limited range in the anomalous dispersion region. The cross-phase modulation (CPM) penalty in a multi-channel system is also studied using the sinusoidally modulated input signal. The derived expression shows good agreement with numerical results in conventional fiber systems over a wide range of channel spacing, ∆<i>f</i>, and in dispersion-shifted fiber systems when ∆<i>f</i> > 100GHz. It is also shown that the effect of fiber nonlinearities may be characterized with stochastic input signals using noise-loading analysis. In a dense wavelength division multiplexed (DWDM) system where channels are spaced very closely, the broadened spectrum due to various nonlinear effects like SPM (self-phase modulation), CPM, and FWM (four-wave mixing) is in practice indistinguishable. In such a system, the noise-loading analysis could be useful in assessing the effects of broadened spectrum due to fiber nonlinearities on system performance. Finally, it is shown numerically how fiber nonlinearities can be utilized to improve system performance of a spectrum-sliced WDM system. The major limiting factors of utilizing fiber nonlinearities are also discussed. / Ph. D.
22

Characterization and Advanced Communication Techniques for Free-Space Optical Channels

Anguita, Jaime A January 2007 (has links)
Free-Space Optical (FSO) communication through the terrestrial atmospheric channel offers many benefits in the wireless communications arena, like power efficiency; suitability for secure communications; absence of electromagnetic interference; and potentially very high bandwidth. An optical beam propagating through the atmosphere is subject to optical turbulence. Optical turbulence is a random process that distorts the intensity and phase structure of a propagating optical beam and induces a varying signal at the receiver of an FSO communication link. This phenomenon (usually referred to as scintillation) degrades the performance of the FSO link by increasing the probability of error. In this dissertation we seek to characterize the effects of the scintillation-induced power fluctuations by determining the channel capacity of the optical link using numerical methods. We find that capacity decreases monotonically with increasing turbulence strength in weak turbulence conditions, but it is non-monotonic in strong turbulence conditions. We show that low-density parity-check (LDPC) codes provide strong error control capabilities in this channel if a perfect interleaver is used. Multiple transmit optical beams can be used to reduce scintillation. We characterize the spatial correlation of the atmospheric optical channel and determine a scintillation model for the multiple-beam scheme. With this model we can predict the effective reduction in scintillation as a function of the system design parameters. A Multi-channel FSO communications system based on orbital angular momentum (OAM)-carrying beams is studied. We analyze the effects of turbulence on the system and find that turbulence induces attenuation and crosstalk among OAM channels. Based on a model in which the constituent channels are binary symmetric and crosstalk is a Gaussian noise source, we find optimal sets of OAM states at each turbulence condition studied, and determine the aggregate capacity of the multi-channel system at those conditions. At very high data rates the FSO channel shows inter-symbol interference (ISI). We address the problem of joint sequence detection in ISI channels and decoding of LDPC codes. We derive the belief propagation equations that allow the simultaneous detection and decoding of a LDPC codeword in a ISI channel.
23

Fully-photonic digital radio over fibre for future super-broadband access network applications

Abdollahi, Seyedreza January 2012 (has links)
In this thesis a Fully-Photonic DRoF (FP-DRoF) system is proposed for deploying of future super-broadband access networks. Digital Radio over Fibre (DRoF) is more independent of the fibre network impairments and the length of fibre than the ARoF link. In order for fully optical deployment of the signal conversion techniques in the FP-DRoF architecture, two key components an Analogue-to-Digital Converter (ADC) and a Digital-to-Analogue Converter (DAC)) for data conversion are designed and their performance are investigated whereas the physical functionality is evaluated. The system simulation results of the proposed pipelined Photonic ADC (PADC) show that the PADC has 10 GHz bandwidth around 60 GHz of sampling rate. Furthermore, by changing the bandwidth of the optical bandpass filter, switching to another band of sampling frequency provides optimised performance condition of the PADC. The PADC has low changes on the Effective Number of Bit (ENOB) response versus analogue RF input from 1 GHz up to 22 GHz for 60 GHz sampling frequency. The proposed 8-Bit pipelined PADC performance in terms of ENOB is evaluated at 60 Gigasample/s which is about 4.1. Recently, different methods have been reported by researchers to implement Photonic DACs (PDACs), but their aim was to convert digital electrical signals to the corresponding analogue signal by assisting the optical techniques. In this thesis, a Binary Weighted PDAC (BW-PDAC) is proposed. In this BW-PDAC, optical digital signals are fully optically converted to an analogue signal. The spurious free dynamic range at the output of the PDAC in a back-to-back deployment of the PADC and the PDAC was 26.6 dBc. For further improvement in the system performance, a 3R (Retiming, Reshaping and Reamplifying) regeneration system is proposed in this thesis. Simulation results show that for an ultrashort RZ pulse with a 5% duty cycle at 65 Gbit/s using the proposed 3R regeneration system on a link reduces rms timing jitter by 90% while the regenerated pulse eye opening height is improved by 65%. Finally, in this thesis the proposed FP-DRoF functionality is evaluated whereas its performance is investigated through a dedicated and shared fibre links. The simulation results show (in the case of low level signal to noise ratio, in comparison with ARoF through a dedicated fibre link) that the FP-DRoF has better BER performance than the ARoF in the order of 10-20. Furthermore, in order to realize a BER about 10-25 for the ARoF, the power penalty is about 4 dBm higher than the FP-DRoF link. The simulation results demonstrate that by considering 0.2 dB/km attenuation of a standard single mode fibre, the dedicated fibre length for the FP-DRoF link can be increased to about 20 km more than the ARoF link. Moreover, for performance assessment of the proposed FP-DRoF in a shared fibre link, the BER of the FP-DRoF link is about 10-10 magnitude less than the ARoF link for -19 dBm launched power into the fibre and the power penalty of the ARoF system is 10 dBm more than the FP-DRoF link. It is significant to increase the fibre link’s length of the FP-DRoF access network using common infrastructure. In addition, the simulation results are demonstrated that the FP-DRoF with non-uniform Wavelength Division Multiplexing (WDM) is more robust against four wave mixing impairment than the conventional WDM technique with uniform wavelength allocation and has better performance in terms of BER. It is clearly verified that the lunched power penalty at CS for DRoF link with uniform WDM techniques is about 2 dB higher than non-uniform WDM technique. Furthermore, uniform WDM method requires more bandwidth than non-uniform scheme which depends on the total number of channels and channels spacing.
24

Design and analysis of survivable WDM mesh networks

Li, Ji, 李季 January 2007 (has links)
published_or_final_version / abstract / Electrical and Electronic Engineering / Doctoral / Doctor of Philosophy
25

Secret Key Rates and Optimization of BB84 and Decoy State Protocols Over Time-Varying Free-Space Optical Channels

Sun, Xiaole, Djordjevic, Ivan B., Neifeld, Mark A. 06 1900 (has links)
We optimize secret key rates (SKRs) of weak coherent pulse (WCP)-based quantum key distribution (QKD) over time-varying free-space optical channels affected by atmospheric turbulence. The random irradiance fluctuation due to scintillation degrades the SKR performance of WCP-based QKD, and to improve the SKR performance, we propose an adaptive scheme in which transmit power is changed in accordance with the channel state information. We first optimize BB84 and decoy state-based QKD protocols for different channel transmittances. We then present our adaptation method, to overcome scintillation effects, of changing the source intensity based on channel state predictions from a linear autoregressive model while ensuring the security against the eavesdropper. By simulation, we demonstrate that by making the source adaptive to the time-varying channel conditions, SKRs of WCP-based QKD can be improved up to over 20%.
26

Design and analysis of survivable WDM mesh networks

Li, Ji, January 2007 (has links)
Thesis (Ph. D.)--University of Hong Kong, 2007. / Title from title frame. Also available in printed format.
27

Advanced system design and performance analysis for high speed optical communications

Pan, Jie 08 June 2015 (has links)
The Nyquist WDM system realizes a terabit high spectral efficiency transmission system by allocating several subcarriers close to or equal to the baud rate. This system achieves optimal performance by maintaining both temporal and spectral orthogonality. However, ISI and ICI effects are inevitable in practical Nyquist WDM implementations due to the imperfect channel response and tight channel spacing and may cause significant performance degradations. Our primary research goals are to combat the ISI effects via the transmitter digital pre-shaping and to remove the ICI impairments at the receiver using MIMO signal processing. First we propose two novel blind channel estimation techniques that enable the transmitter pre-shaping design for the ISI effects mitigation. Both numerical and experimental results demonstrate that the two methods are very effective in compensating the narrow band filtering and are very robust to channel estimation noise. Besides pre-shaping, the DAC-enabled transmitter chromatic dispersion compensation is also demonstrated in a system with high LO laser linewidth. Next a novel “super-receiver” structure is proposed, where different subchannels are synchronously sampled, and the baseband signals from three adjacent subchannels are processed jointly to remove ICI penalty. Three different ICI compensation methods are introduced and their performances compared. The important pre-processes that enable a successful ICI compensation are also elaborated. Despite ICI compensation, the joint carrier phase recovery based on the Viterbi-Viterbi algorithm is also studied in the carrier phase locked systems. In-band crosstalk arises from the imperfect switch elements in the add-drop process of ROADM-enabled DWDM systems and may cause significant performance degradation. Our third research topic is to demonstrate a systematic way to analyze and predict the in-band crosstalk-induced penalty. In this work, we propose a novel crosstalk-to-ASE noise weighting factor that can be combined with the weighted crosstalk weighting metric to incorporate the in-band crosstalk noise into the Gaussian noise model for performance prediction and analysis. With the aid of the Gaussian noise model, the in-band crosstalk-induced nonlinear noise is also studied. Both simulations and experiments are used to validate the proposed methods.
28

Integrating IP Protocol Into Optical Networks by Using Software-defined Network (SDN)

Al-Ani, Layth January 2015 (has links)
The Internet, with cloud computing, offers amazing services that require a fast, intelligent, reliable network connection. Current networks, electrical or optical, need to work together to provide the user with a high-quality connection. The IP protocol as Layer 3 and an optical network as Layer 2 need to talk to each other and help each other instead of working separately. Therefore, this thesis proposes using software-defined network (SDN) technology for integrating the IP protocol into an optical network to fill the gap between the two layers and to give the network more intelligence and flexibility for new connection requests, choosing the best route, and monitoring the network. A two-layer SDN centralized controller design has been used. The Layer 1 SDN controller is the centralized controller that connects and updates all Layer 2 SDN controllers which control traffic in each domain. New connection requests are processed in the SDN controller and the traffic is forwarded by the optical network. SDN technology and the integration of IP into the optical network promise to enhance network connectivity.
29

Underwater wireless optical communication system under reciprocal turbulence

Guo, Yujian 11 1900 (has links)
Underwater communication systems are in high demanded for subaquatic environment activities as the sea is an enormous and mostly unexplored place. The ten-meter long and few giga-bit per second range optical communication technique is feasible and has bright future compared to the mature but low data rate (few kilobits per second) acoustic technology and short distance (several meters) radio-frequency signaling schemes. The underwater wireless optical communication (UWOC) technique takes advantage of wide bandwidth, low attenuation effect in the visible range for multiple applications such as seafloor and offshore exploration, oil pipe control and maintenance, and pipeline leak detection. Nowadays, visible light-emitting diode (LED)-based and laser diode (LD)-based UWOC system are attractive and much related research is being conducted in the field. However, the major challenges of developing UWOC systems are the attenuation, scattering and turbulence effects of the underwater environment. The temperature gradient, salinity gradient, and bubbles make underwater optical channel predictable challenging and degrade the optical beam propagating distance and quality. Most studies focus on the statistical distribution of intensity fluctuations in underwater wireless optical channels with random temperature and salinity variations as well as the presence of air bubbles. In this thesis, we experimentally investigate the reciprocity nature of underwater turbulence caused by the turbidity, air bubbles, temperature variations, and salinity. Bit error rate measurement and statistical data analysis reveal the high reciprocal nature of turbulence that can be induced by the presence of bubbles, temperature, and salinity. The mitigation strategies for the different turbulence scenarios are discussed.
30

Characterization of non-conventional methods for alignment relaxation in underwater wireless optical communication systems

Sait, Mohammed 11 1900 (has links)
The Internet of Underwater Things (IoUT) paradigm is expected to enable various practical applications such as environmental monitoring, underwater exploration, and disaster prevention. Supporting the concept of IoUT requires robust underwater wireless communication infrastructure. Optical wireless communication has the superiority of wide bandwidth, low latency, and high data capacity over its counterparts, namely, acoustic and radio-frequency. However, the transmission of the optical beam has inherent drawbacks in a harsh environment. Obstructions such as geometrical underwater terrains and underwater turbulence can pose a serious challenge to the alignment of the transmitter and the receiver. Non-line-of-sight (NLOS) configuration is a generalized alignment scheme between the transmitter and the receiver such that the strict requirement of precise alignment (point-to-point) is no longer needed. In this dissertation, the effectiveness of NLOS to withstand challenging underwater turbulence is examined. Thermal gradients with a maximum temperature difference of 10 ◦C had a negligible effect on the received power. The presence of air bubble clouds caused an increase of 38% of the received power when the bubble area increased from 5.2 to 80 mm$^2$. Additionally, various salinity concentrations ranging between 30-40‰ are emulated. A gain of 32.5% in the signal-to-noise ratio is observed when the salinity gradient increased from 0.08 to 0.4‰·cm$^{−1}$. Moreover, a reduction of 2.35 dB/m of the pathloss is noticed. The bit-error ratio is used to examine the communication quality using on-off-keying modulation scheme. In addition, this dissertation shows a practical wavelength-division multiplexing method based on large-area detection and wide field-of-view (FoV) photonic receiver. The dual-antenna is made of scintillating fibers with distinctive characteristics. An aggregated data rate of 1 Gbps is achieved. Two methods of wavelengths separation are demonstrated. Additionally a field deployment verification in an outdoor water pool is conducted at a maximum separation distance of 10m. The presented promising results pave the way for a robust underwater wireless optical sensor network that serves as a building block for achieving the goal of establishing IoUT.

Page generated in 0.1345 seconds