• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 57
  • 29
  • 7
  • 4
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 129
  • 129
  • 31
  • 29
  • 24
  • 21
  • 20
  • 17
  • 16
  • 16
  • 13
  • 12
  • 12
  • 11
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

A Novel Normal-To-Plane Space Efficient Micro Corner Cube Retroreflector With Improved Fill Factor

Agarwal, Rahul 07 November 2003 (has links)
A Corner Cube Retro-reflector (CCR) is a device that can be used as transmitters in wireless free space optical communication systems, or remote sensing instruments. A novel approach to fabricate the CCR is developed, where almost 100% of the planar chip area acts as the CCR compared to the maximum of 33% in the prior MEMS CCRs. Unlike the conventional micro machined CCRs that have two planes (mirrors of the CCR) normal to the surface of the wafer, our approach yields all the mirrors within the bulk of the wafer, ensuring very high packing densities and wide acceptance angles. The crystallography of single crystal silicon wafer along with different micromachining and wafer bonding techniques are used to fabricate and assemble the CCR. The solid models of both the active and passive CCRs were built using Coventorware simulation software. In the active CCRs, one of the mirror was electrostatically actuated; this is simulated using the software. The results which show a three fold decrease in the pull-in voltage as compared to surface micromachined cantilevers with the same dimensions as presented. Fabrication of the passive CCR along with various fabrication and assembling processes used are discussed. Experimental results are presented and then discussed.
42

Future Extensions to Passive Optical Access Networks

Radziwilowicz, Robert 30 April 2012 (has links)
Rapid changes in population distribution across Canada and the introduction of new telecommunication services to the consumer market have resulted in a number of significant challenges for existing network infrastructure. Fast growing populations in metropolitan regions require high density access networks to meet the growing need for bandwidth that results. Furthermore, new services such as high definition TV, online gaming and real-time video teleconferencing are becoming increasingly popular among consumers. These services require higher bandwidth to be available to end users. Changes in the Canadian economy will soon lead to a transition in Canadian industry from manufacturing to services and exploration of natural resources. This will create opportunities for new industrial development and growth in northern regions. Expanding industrialization towards northern Canada will require deployment of reliable telecommunication infrastructure. The combination of open source software, Linux operating system and Personal Computer (PC) based hardware platform is proposed to become the foundation for low cost and flexible technology that will provide transition towards all-optical infrastructures. An innovative prototype of a low-cost optical gigabit Ethernet switch is presented and its benchmark results are discussed. Scalability of the switch and its future applications in optical networks are studied. A prototype of a software based data encapsulation system was designed and implemented in a PC based platform, and its performance was evaluated using real data that was captured in commercial LAN. Semiconductor optical amplifiers (SOA) are studied as a building block in next generation switching devices for all-optical access networks. A prototype of an SOA-based low-cost optical switching device with implemented FPGA based controlling mechanism is presented and its characteristics are discussed. SOA is also studied as an energy efficient optical amplifier that can be deployed in end user facilities. The presented results provide proof of concept of a low cost flexible platform that can be used to design and build network devices to facilitate the transition of existing telecommunication networks towards next generation optical access infrastructure.
43

Temporal Dynamics of Polarization and Polarization Mode Dispersion and Influence on Optical Fiber Systems

Soliman, George January 2013 (has links)
This thesis examines polarization and polarization mode dispersion (PMD) dynamics in optical fibers as well as the evaluation of probability density functions and bit error rates in a realistic wavelength division multiplexed (WDM) optical communication systems. In the first part of the thesis, experimental studies of the dynamics of polarization in a dispersion compensation module (DCM) are performed in which mechanical shocks are imparted to several different DCMs by dropping a steel ball on the outer casing at different locations and from different heights and the resulting rapid polarization fluctuations are measured. We provide a theoretical model that accounts for the dynamic birefringence generated due to the impact. Next, an experimental technique is proposed to detect the location of temporal polarization activity in WDM systems. It is demonstrated theoretically and in simulations that measurement of both the PMD vector and the Stokes parameters at the WDM frequencies enables the detection of the location of such activity. Different linear prediction procedures are applied to the differential group delay of an optical fiber link assumed to obey the hinge model. The hinges are modeled as polarization rotators with fixed rotation axes and sinusoidally varying rotation angles. Three prediction methods are investigated and consequently compared: an autoregressive model (AR) with Kalman filter, a pattern imitation method and a Taylor expansion technique. The effect of measurement noise on the prediction horizon is also investigated for each prediction method. Using a physically reasonable stochastic model for the hinges, we derive analytical expressions for the temporal autocorrelation functions of the state of polarization (SOP) and the PMD vector. The obtained analytical results are compared to simulations. Finally, we apply the multicanonical method to the probability density function of received symbols and the symbol error ratio (SER) in a dual polarization quadrature phase shift keyed (DP-QPSK) WDM system. We simulate five co propagating channels at a symbol rate of 10.7 GBaud/s and account for PMD and nonlinear effects. We evaluate the performance of the system for two different cases: single mode fibers with full dispersion compensation at the end of the link, effective large area fibers (LEAF) with full dispersion compensation at the end of the link.
44

Optical Orbital Angular Momentum for Secure and Power Efficient Point-to-Point FSO Communications

Alfowzan, Mohammed, Khatami, Mehrdad, Vasic, Bane 10 1900 (has links)
ITC/USA 2013 Conference Proceedings / The Forty-Ninth Annual International Telemetering Conference and Technical Exhibition / October 21-24, 2013 / Bally's Hotel & Convention Center, Las Vegas, NV / We address the problem of detection in orbital angular momentum (OAM). The focus of our analysis will be on the power efficient Q-ary Pulse Position Modulation (Q - PPM). Free space optical signals sent through wireless channels are degraded by atmospheric turbulence. In this paper a novel detection approach based on a factor graph representation of OAM Q-PPM signalling is presented to equalize for the crosstalk among orbital angular momentum vortices. It will be shown that our proposed detection algorithm significantly outperforms the separate detection scenario in terms of error rate performance.
45

EXPERIMENTAL DEMONSTRATION OF MITIGATION OF LINEAR AND NONLINEAR IMPAIRMENTS IN FIBER-OPTIC COMMUNICATION SYSTEMS BY LDPC-CODED TURBO EQUALIZATION

Minkov, Lyubomir L. January 2009 (has links)
The ever-increasing demands for transmission capacity are the cause for the quick evolution of optical communication systems. Channel transmission at 100 Gb/s is already being considered by network operators. The major transmission impairments at these high rates are intra-channel and inter-channel nonlinearities, nonlinear phase noise, and polarization mode dispersion. By implementing LDPC-coded modulation schemes with soft decoding and Bahl-Cocke-Jelinek-Raviv (BCJR) algorithm for equalization we have demonstrated significant improvements in system performance experiencing several impairments simultaneously. The new turbo-equalization scheme is used as a mean to simultaneously mitigate both linear and nonlinear impairments. This approach is general and applicable to both direct and coherent detection.We provide comprehensive study of LDPC codes suitable for implementation in high-speed optical transmission systems. We determine channel capacity based on the forward step of the BCJR algorithm and show that by using LDPC codes we can closely approach the maximum transmission capacity that is possible. We propose the multilevel maximum a posteriori probability (MAP) turbo equalization scheme based on multilevel BCJR algorithm and an LDPC decoder, which considers independent symbols transmitted over both polarizations as two dimensional super-symbols. The use of multilevel modulation schemes provide higher spectral efficiency, while all related signal processing is performed at lower symbol rates, where dealing with PMD compensation and fiber nonlinearities mitigation is more manageable. We show significant improvement in system performance over a system employing an equalizer that considers symbols transmitted in different polarizations as independent.
46

Temporal Dynamics of Polarization and Polarization Mode Dispersion and Influence on Optical Fiber Systems

Soliman, George January 2013 (has links)
This thesis examines polarization and polarization mode dispersion (PMD) dynamics in optical fibers as well as the evaluation of probability density functions and bit error rates in a realistic wavelength division multiplexed (WDM) optical communication systems. In the first part of the thesis, experimental studies of the dynamics of polarization in a dispersion compensation module (DCM) are performed in which mechanical shocks are imparted to several different DCMs by dropping a steel ball on the outer casing at different locations and from different heights and the resulting rapid polarization fluctuations are measured. We provide a theoretical model that accounts for the dynamic birefringence generated due to the impact. Next, an experimental technique is proposed to detect the location of temporal polarization activity in WDM systems. It is demonstrated theoretically and in simulations that measurement of both the PMD vector and the Stokes parameters at the WDM frequencies enables the detection of the location of such activity. Different linear prediction procedures are applied to the differential group delay of an optical fiber link assumed to obey the hinge model. The hinges are modeled as polarization rotators with fixed rotation axes and sinusoidally varying rotation angles. Three prediction methods are investigated and consequently compared: an autoregressive model (AR) with Kalman filter, a pattern imitation method and a Taylor expansion technique. The effect of measurement noise on the prediction horizon is also investigated for each prediction method. Using a physically reasonable stochastic model for the hinges, we derive analytical expressions for the temporal autocorrelation functions of the state of polarization (SOP) and the PMD vector. The obtained analytical results are compared to simulations. Finally, we apply the multicanonical method to the probability density function of received symbols and the symbol error ratio (SER) in a dual polarization quadrature phase shift keyed (DP-QPSK) WDM system. We simulate five co propagating channels at a symbol rate of 10.7 GBaud/s and account for PMD and nonlinear effects. We evaluate the performance of the system for two different cases: single mode fibers with full dispersion compensation at the end of the link, effective large area fibers (LEAF) with full dispersion compensation at the end of the link.
47

Hybrid and resilient WDM mesh optical networks

Huang, Hong 12 1900 (has links)
No description available.
48

Improved Coding Techniques for MPPM-like Systems

Liu, Siyu 15 February 2010 (has links)
Multipulse pulse position modulation (MPPM) has been widely proposed to improve data rate over the traditional pulse position modulation (PPM) in free-space optical communication systems. However, there is no known efficient method of encoding MPPM codewords. Furthermore, MPPM is not the optimal coding scheme (in terms of data rate) given the two main constraints of optical systems (duty cycle and zero runlength). In this work, an improved encoding technique for MPPM is provided as well as an analysis of regions where significant rate gain over MPPM is achievable. A new coding technique based on constrained coding is introduced that allows construction of codes which achieves considerable rate gain over comparable MPPM systems. In addition, our new codes allow for convenient concatenation with an outer-code and are suitable for iterative decoding. Simulation results show that these codes can achieve a $6$ dB coding gain over comparable MPPM systems.
49

Improved Coding Techniques for MPPM-like Systems

Liu, Siyu 15 February 2010 (has links)
Multipulse pulse position modulation (MPPM) has been widely proposed to improve data rate over the traditional pulse position modulation (PPM) in free-space optical communication systems. However, there is no known efficient method of encoding MPPM codewords. Furthermore, MPPM is not the optimal coding scheme (in terms of data rate) given the two main constraints of optical systems (duty cycle and zero runlength). In this work, an improved encoding technique for MPPM is provided as well as an analysis of regions where significant rate gain over MPPM is achievable. A new coding technique based on constrained coding is introduced that allows construction of codes which achieves considerable rate gain over comparable MPPM systems. In addition, our new codes allow for convenient concatenation with an outer-code and are suitable for iterative decoding. Simulation results show that these codes can achieve a $6$ dB coding gain over comparable MPPM systems.
50

Future Extensions to Passive Optical Access Networks

Radziwilowicz, Robert 30 April 2012 (has links)
Rapid changes in population distribution across Canada and the introduction of new telecommunication services to the consumer market have resulted in a number of significant challenges for existing network infrastructure. Fast growing populations in metropolitan regions require high density access networks to meet the growing need for bandwidth that results. Furthermore, new services such as high definition TV, online gaming and real-time video teleconferencing are becoming increasingly popular among consumers. These services require higher bandwidth to be available to end users. Changes in the Canadian economy will soon lead to a transition in Canadian industry from manufacturing to services and exploration of natural resources. This will create opportunities for new industrial development and growth in northern regions. Expanding industrialization towards northern Canada will require deployment of reliable telecommunication infrastructure. The combination of open source software, Linux operating system and Personal Computer (PC) based hardware platform is proposed to become the foundation for low cost and flexible technology that will provide transition towards all-optical infrastructures. An innovative prototype of a low-cost optical gigabit Ethernet switch is presented and its benchmark results are discussed. Scalability of the switch and its future applications in optical networks are studied. A prototype of a software based data encapsulation system was designed and implemented in a PC based platform, and its performance was evaluated using real data that was captured in commercial LAN. Semiconductor optical amplifiers (SOA) are studied as a building block in next generation switching devices for all-optical access networks. A prototype of an SOA-based low-cost optical switching device with implemented FPGA based controlling mechanism is presented and its characteristics are discussed. SOA is also studied as an energy efficient optical amplifier that can be deployed in end user facilities. The presented results provide proof of concept of a low cost flexible platform that can be used to design and build network devices to facilitate the transition of existing telecommunication networks towards next generation optical access infrastructure.

Page generated in 0.1329 seconds