1 |
Occupational Exposure to Ultrafine Particles and Polycyclic Aromatic Hydrocarbons from Candle EmissionsSilver, David J 18 November 2005 (has links)
Ultrafine particles (UFPs) are present in the ambient atmosphere and are generated from atmospheric gases, pollution sources, and combustion. Candles emit carbonaceous soot particles similar to UFPs present in the ambient atmosphere. With the exception of lead, airborne concentrations of candle emissions have not been shown capable of causing cancer or cardiopulmonary disease during normal use. The purpose of this research is to determine the occupational risk associated with candle emissions.
Candle studies employ chambers to measure candle emission exposures and assess public health risk. Chambers used in previous studies did not match normal room conditions. They were affected by turbulence and high temperature, which affected particle distribution and constituent concentrations, while making it difficult to extrapolate the results.
The chamber designed for this study sought to avoid the problems noted above. This study also employed a room constructed to closely simulate a normal work environment. Candle suppliers and users were surveyed to determine occupational candle use and settings. Scented, unscented, and church candles were measured in both ventilated and unventilated environments. A condensation nuclei counter was used to measure UFPs from candle emissions.
Relative to previous chamber designs, results indicated a reduction in candle soot generation, no significant airborne concentrations of metals, and airborne concentrations of polycyclic aromatic hydrocarbons (PAHs), below occupational limits. Scented candles generated more soot than unscented candles.
UFP studies have demonstrated only weak associations between ambient UFP exposures and cardiopulmonary disease. However, ambient UFP exposures were used as a benchmark for candle soot exposures. The lifetime average daily dose (LADD) was calculated from the candle soot measurement data and ambient UFP data. Candle soot generated inside the test room ranged from 5.73 x 109 to 1.86 x 1011 number of candle soot particles inhaled daily compared to the 3.25 x1011 to 2.45 x 1012 soot particles inhaled in the ambient environment. The calculated candle soot dose was nearly an order of magnitude less than the calculated ambient dose. The conclusion is that candle emissions do not pose a health risk under normal occupational use.
|
2 |
Effects of Optical Configuration and Sampling Efficiency on the Response of Low-Cost Optical Particle CountersHales, Brady Scott 08 April 2022 (has links)
Hazards associated with air pollution motivate the search for technologies capable of monitoring individual exposure to gaseous pollutants and particulate matter (PM). A Low-cost Optical Particle Counter (OPC), costing less than 50 USD, is an example of such technologies. Currently, OPCs are widely used to measure the concentration of particle matter in ambient air. While these low-cost air quality sensors are widely available, the accuracy and precision of these devices is highly uncertain. Consequently, the purpose of this thesis is to present an analytical model of two generic, low-cost OPCs based on the Laws of Conservation of Mass, Momentum, and Energy. These models utilize Mie scattering theory and Computational Fluid Dynamics models to quantify uncertainty and accuracy in low-cost OPCs based first principles. Modeling results indicate that the measurement of forward-scattered light may dramatically increase the accuracy of low-cost OPCs. These results also indicate that careful attention must be placed on the design of sensor flow passages so as to most efficiently transport particles to the scattering volume where they may be detected. A combination of careful attention to photodetector placement in the forward scattering regime as well as efficient transport to the scattering volume may increase low-cost OPC accuracy by magnitudes of order.
|
3 |
Ensuring Respiratory Protection through Respirator Fit Testing and Real-Time MonitoringWu, Bingbing 30 October 2018 (has links)
No description available.
|
Page generated in 0.1179 seconds