• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 1
  • Tagged with
  • 10
  • 10
  • 8
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Experiments with Bose-Einstein condensates in optical potentials

Geursen, Reece Wim, n/a January 2005 (has links)
We present a detailed experimental investigation into Bose-Einstein condensates loaded into a one-dimensional optical standing wave at the Bragg condition. The main emphasis of this thesis is the experimental and theoretical investigation into Bragg spectroscopy performed on circularly accelerating Bose-Einstein condensates. The condensate undergoes circular micromotion in a magnetic time-averaged orbiting potential trap and the effect of this motion on the Bragg spectrum is analysed. A simple frequency modulation model is used to interpret the observed complex structure, and broadening effects are considered using numerical solutions to the Gross-Pitaevskii equation. The second part of this thesis is an experimental investigation into the effect of nonlinearity on the non-adiabatic loading of a condensate into a optical lattice at the Brillouin zone boundary. Results of using a phase shifting technique to load a single Bloch band in the presence of strong interactions are presented. We observe a depletion of the condensed component, and we propose possible mechanisms for this result.
2

Double-TOP trap for ultracold atoms

Thomas, Nicholas, n/a January 2005 (has links)
The Double-TOP trap is a new type of magnetic trap for neutral atoms, and is suitable for Bose-Einstein condensates (BECs) and evaporatively cooled atoms. It combines features from two other magnetic traps, the Time-averaged Orbiting Potential (TOP) and Ioffe-Pritchard traps, so that a potential barrier can be raised in an otherwise parabolic potential. The cigar-like cloud of atoms (in the single-well configuration) is divided halfway along its length when the barrier is lifted. A theoretical model of the trap is presented. The double-well is characterised by the barrier height and well separation, which are weakly coupled. The accessible parameter space is found by considering experimental limits such as noise, yielding well separations from 230 [mu]m up to several millimetres, and barrier heights from 65 pK to 28 [mu]K (where the energies are scaled by Boltzmann�s constant). Potential experiments for Bose-Einstein condensates in this trap are considered. A Double-TOP trap has been constructed using the 3-coil style of Ioffe-Pritchard trap. Details of the design, construction and current control for these coils are given. Experiments on splitting thermal clouds were carried out, which revealed a tilt in the potential. Two independent BECs were simultaneously created by applying evaporative cooling to a divided thermal cloud. The Double-TOP trap is used to form a linear collider, allowing direct imaging of the interference between the s and d partial waves. By jumping from a double to single-well trap configuration, two ultra-cold clouds are launched towards a collision at the trap bottom. The available collision energies are centred on a d-wave shape resonance so that interference between the s and d partial waves is pronounced. Absorption imaging allows complete scattering information to be collected, and the images show a striking change in the angular distribution of atoms post-collision. The results are compared to a theoretical model, verifying that the technique is a useful new way to study cold collisions.
3

Quantum transport and control of atomic motion with light

Gutiérrez-Medina, Braulio 28 August 2008 (has links)
Not available / text
4

Double-TOP trap for ultracold atoms

Thomas, Nicholas, n/a January 2005 (has links)
The Double-TOP trap is a new type of magnetic trap for neutral atoms, and is suitable for Bose-Einstein condensates (BECs) and evaporatively cooled atoms. It combines features from two other magnetic traps, the Time-averaged Orbiting Potential (TOP) and Ioffe-Pritchard traps, so that a potential barrier can be raised in an otherwise parabolic potential. The cigar-like cloud of atoms (in the single-well configuration) is divided halfway along its length when the barrier is lifted. A theoretical model of the trap is presented. The double-well is characterised by the barrier height and well separation, which are weakly coupled. The accessible parameter space is found by considering experimental limits such as noise, yielding well separations from 230 [mu]m up to several millimetres, and barrier heights from 65 pK to 28 [mu]K (where the energies are scaled by Boltzmann�s constant). Potential experiments for Bose-Einstein condensates in this trap are considered. A Double-TOP trap has been constructed using the 3-coil style of Ioffe-Pritchard trap. Details of the design, construction and current control for these coils are given. Experiments on splitting thermal clouds were carried out, which revealed a tilt in the potential. Two independent BECs were simultaneously created by applying evaporative cooling to a divided thermal cloud. The Double-TOP trap is used to form a linear collider, allowing direct imaging of the interference between the s and d partial waves. By jumping from a double to single-well trap configuration, two ultra-cold clouds are launched towards a collision at the trap bottom. The available collision energies are centred on a d-wave shape resonance so that interference between the s and d partial waves is pronounced. Absorption imaging allows complete scattering information to be collected, and the images show a striking change in the angular distribution of atoms post-collision. The results are compared to a theoretical model, verifying that the technique is a useful new way to study cold collisions.
5

Quantum transport and control of atomic motion with light

Gutiérrez-Medina, Braulio, Raizen, Mark George, January 2004 (has links) (PDF)
Thesis (Ph. D.)--University of Texas at Austin, 2004. / Supervisor: Mark G. Raizen. Vita. Includes bibliographical references. Also available from UMI.
6

Separable Representation of Nucleon-Nucleus Optical Potentials as Input to (d,p) Reaction Calculations

Hlophe, Linda D. 19 September 2016 (has links)
No description available.
7

A microscopic description of nuclear alpha decay

Ogunbade, Olusegun G. 30 September 2005 (has links)
Radioactive decay of nuclei via emission of ??-particles is studied using three different theoretical approaches, viz: the quasi-bound state wavefunction approach (QSWA), the superasymmetric ??ssion model (SAFM) and the semiclassical approximation (QCA). The half-lives of the radioactive nuclei, calculated using these methods, are compared with each other and with available experimental data. The resonance wavefunction is obtained by numerically integrating the Schrödinger equation with outgoing boundary conditions. The sensitivity of the calculated decay widths to two particular parameter sets of the Woods-Saxon (WS) optical potentials are studied. Double folding (DF) model calculations to obtain the bare ??-nucleus potential have been carried out with the Reid M3Y effective nucleon-nucleon (NN) interactions. The exchange part of the interaction was taken to be of zero-range pseudo-potential and the density dependence of the NN interaction is accounted for. The effectiveness of the method is demonstrated using both even-even and odd-mass spherical nuclei. / Physics / MSC (PHYSICS)
8

Aprisionamento óptico de micropartículas e desenvolvimento de potenciais ópticos dinâmicos / Optical trapping of microparticles and development of dynamic optical potentials

Martins, Thalyta Tavares 12 July 2019 (has links)
Desde o desenvolvimento dos primeiros métodos de controle do movimento e posição de partículas usando lasers, ainda no início da década de 1970, até o reconhecimento com o prêmio Nobel de Física de 2018, uma das principais e mais versáteis ferramentas de manipulação óptica, as chamadas pinças ópticas, têm sido usadas majoritariamente para explorar objetos em dois regimes de tamanho: o limite das partículas sub-nanométricas (átomos e moléculas simples) e o limite das partículas micrométricas (com aplicações especialmente em sistemas biológicos). Nesse trabalho, foi desenvolvido e construído um aparato experimental para aprisionar micro e nanopartículas numa pinça óptica, que pode ser controlada de forma dinâmica usando modulação acusto-óptica do feixe de aprisionamento. A calibração da pinça óptica foi feita por diversos métodos, incluindo o método de equipartição de energia e análise do potencial óptico, resultando em forças de aprisionamento da ordem de piconewtons por micrometros. Ademais, simulações computacionais de modelos estocásticos foram realizadas com o intuito de comparar os resultados experimentais com àqueles previstos teoricamente e guiar estudos futuros. / Since the development of early methods for controlling the motion and position of particles using lasers, in the 1970s, to the recognition with the 2018 Nobel Prize for Physics, one of the most versatile optical manipulation tools, the so-called optical tweezers, have been used mostly to explore objects in two limits of sizes: the sub nanometric particles (atoms and simple molecules) and the micrometric particles (with applications especially in biological systems). In this work, an experimental apparatus was developed and built to trap micro and nanoparticles in an optical tweezer that can be dynamically controlled, using acoustic-optical modulation of the trapping beam. The calibration of the optical tweezer was done using several methods, including the energy equipartition method and optical potential analysis, resulting in trapping forces on the order of piconewtons per micrometers. In addition, computational simulations of stochastic models were performed with the purpose of comparing the experimental results with those predicted theoretically and guiding future studies.
9

Ultracold atoms in optical potentials : from noise-induced transport to superfluidity

Zelan, Martin January 2011 (has links)
In this thesis, both experimental studies and numerical simulations of ultracold atoms in optical potentials are presented in a collection of nine scientific papers. In particular, noise-induced transport in dissipative optical lattices and superfluid properties of Bose-Einstein condensates have been studied. Noise is usually regarded as a complication to most systems and as something that needs to be minimized. However, in a series of experiments at Umeå University, noise has been shown to play a key role for laser-cooled cesium atoms trapped in dissipative optical lattices. By using a combination of two dissipative optical lattices, where the relative spatial phase between them can be controlled, a so-called Brownian motor can be realized, where energy can be extracted from the inherent noise. In the experiment, this energy is used to control the transport of the laser-cooled atoms in real time and along pre-designed paths. This thesis also presents a way to characterize this system in terms of energy conversion efficiency and coherence of the transport, which may allow for a more straightforward comparison with other systems that rely on noise rectification. In the studies, it is also shown that the noise triggers a downward drift due to gravity, even though the optical potential should support the atoms. Further investigation of this might help to understand the underlying principles of laser cooling, as well as showing that the system might be suitable as a flexible test bed for statistical physics. In close relation to the experimental system, two numerical simulations are also presented, one in which different ways to induce asymmetries between two periodic potentials are investigated, and one in which a proposal for detecting quantum walks is explored. In the second part of the thesis, a work from the Joint Quantum Institute is presented, where a long-lived persistent current in a toroidal Bose-Einstein condensate, held in an all-optical trap, is created. The critical velocity of the superflow is measured in the presence of a tunable barrier. The system can be seen as a first realization of an elementary closed-loop atom circuit. Finally a theoretical study of the crossover between one- and two-dimensional systems is presented, in particular the transition between a two-dimensional superfluid to a one-dimensional Mott insulator is investigated. / Medelst nio vetenskapliga artiklar presenteras i denna avhandling experimentella och teoretiska studier av ultrakalla atomer fångade i optiska potentialer. Framförallt har brusinducerade transporter och supraytande egenskaper hos Bose-Einstein-kondensat studerats.     För de flesta system betraktas brus som något negativt som bör minimeras, men i en serie experiment som redovisas i denna avhandling spelar bruset istället en avgörande positiv roll. I ett system där laserkylda atomer genom växelverkan med laserstrålar fångas i två individuella optiska kristallgitter, kan atomernas kollektiva rörelse styras genom att energi utvinns ur det inneboende bruset. I denna avhandling, genom att kontrollera de optiska potentialerna i realtid, visas att atomernas kollektiva rörelse kan styras längs förutbestämda banor med en så kallade Brownska motor. I ett annat experiment mäts verkningsgraden i omvandligen mellan brus och arbete, samt koherensen i atomtransporten. En sådan karakterisering gör att systemet blir enklare att jämföra med andra system som bygger på liknande principer. I avhandlingen presenteras också en studie där det visas att det inneboende bruset i systemet, tillsammans med en svag kraft, i detta fall från gravitation, kan skapa drifter trots att de optiska potentialerna borde vara tillräckligt djupa för att atomerna ska vara fångade. Denna upptäckt kan leda till ökad grundläggande kundskap om laserkylning. Dessutom visar det att systemet kan beskrivas med modeller från statistisk fysik. I relation till det experimentella systemet i Umeå redovisas även två teoretiska studier, en för två symmetriska periodiska potentialer och deras sätt att möjliggöra inducerade drifter med olika typ av asymmetrier, samt en annan för möjligheten att genomföra och detektera kvantvandringar.     I avhandlingen presenteras också ett experimentellt arbete utfört vid Joint Quantum Institute, där en långlivad ihållande ström i ett torusformat Bose-Einstein-kondensat har skapats i en optisk fälla. Den kritiska hastigheten på strömmen har mätts i närvaron av en ställbar optisk barriär. Detta system kan ses som en första realisation av en grundläggande atomkrets. Slutligen presenteras även en teoretisk studie av övergången mellan en- och tvådimensionella system, där fasövergången mellan superytande och Mottisolation studeras.
10

A microscopic description of nuclear alpha decay

Ogunbade, Olusegun G. 30 September 2005 (has links)
Radioactive decay of nuclei via emission of ??-particles is studied using three different theoretical approaches, viz: the quasi-bound state wavefunction approach (QSWA), the superasymmetric ??ssion model (SAFM) and the semiclassical approximation (QCA). The half-lives of the radioactive nuclei, calculated using these methods, are compared with each other and with available experimental data. The resonance wavefunction is obtained by numerically integrating the Schrödinger equation with outgoing boundary conditions. The sensitivity of the calculated decay widths to two particular parameter sets of the Woods-Saxon (WS) optical potentials are studied. Double folding (DF) model calculations to obtain the bare ??-nucleus potential have been carried out with the Reid M3Y effective nucleon-nucleon (NN) interactions. The exchange part of the interaction was taken to be of zero-range pseudo-potential and the density dependence of the NN interaction is accounted for. The effectiveness of the method is demonstrated using both even-even and odd-mass spherical nuclei. / Physics / MSC (PHYSICS)

Page generated in 0.0933 seconds