1 |
Nocturnal Fish Distribution, Feeding and Predation Risk in Relation to a Mangrove-Seagrass EcotoneHammerschlag, Neil 06 December 2009 (has links)
The combined effects of food availability and predation risk on fish foraging behavior have been investigated via both laboratory and field experiments, primarily in temperate, freshwater systems and during daylight hours. In contrast, relatively little attention has been directed towards fish foraging decisions along subtropical shorelines, which serve as nursery grounds for a variety of economically important fishes, as well as at night, when many species emerge from refuges to feed. The mangrove-seagrass ecotone and adjacent seagrass beds constitute nocturnal feeding grounds for fish secondary-tertiary consumers. In subtropical Biscayne Bay, Florida (USA), I investigated the influences of food and risk on nocturnal seagrass use by gray snapper (Lutjanus griseus), bluestriped grunt (Haemulon sciurus), great barracuda (Sphyraena barracuda), and seabream (Archosargus rhomboidalis) along a distance gradient, spanning from the mangrove fringe to 120 m from shore. This was accomplished by conducting a series of integrated field and laboratory studies, including: (1) nocturnal seine sampling to determine fish abundance patterns in relation to the mangrove-seagrass interface; (2) fish stomach content analysis to reveal feeding habits and trophic relationships; and (3) diel field tethering experiments to explore nearshore gradients in predation pressure. With these data I tested a priori predictions of fish distributions relative to food and predation risk that were generated from foraging theory: (1) fishes will be distributed across the distance gradient in proportion to their food supply (i.e., ideal free distribution, IFD); or (2) fishes will avoid high risk areas such that their abundances will be lower than predicted by food resources in high-risk habitats (i.e., food-risk trade-off). Results revealed that fish assemblage composition differed by season and distance from shore, with the zone nearest the mangroves generally harboring the lowest densities of late-stage juvenile fishes. Stomach content analysis demonstrated that gray snapper fed on a variety of small fishes and crustaceans, while bluestriped grunt fed primarily on caridean shrimp. Seabream fed almost exclusively on vegetation and great barracuda was almost entirely piscivorous; however, seasonal shifts in diet and feeding habits were evident. Seasonal shifts in major food resource use generally did not correspond with changes in relative abundance of food supply. Seasonal trophic niche breadth differences were evident for gray snapper, great barracuda and bluestriped grunt, while niche breadth was equivalent between seasons for seabream. Based on seasonal food supply in the environment, niche breadth values did not match basic foraging theory predictions, which state niche breadth should expand as preferred food resources become scarce. Tethering experiments indicated that predation rates were highest nearest the mangrove edge and decreased with increasing distance from shore. Moreover, predation pressure at night was nearly twice as high compared to the day. Testing these data against my predictions from foraging theory, I found that none of the fishes examined (gray snapper, seabream and bluestriped grunt) were distributed according to IFD. Seabream and gray snapper avoided foraging close to the mangrove-edge, where their food was most abundant, but risk was highest. Bluestriped grunt appeared to forage randomly across the distance gradient despite spatial variation in food and predation risk. Overall, results suggest that: (1) spatial patterns of utilization of seagrass habitat adjacent to the mangrove-seagrass ecotone differs by species, life-stage and season; (2) Seasonal shifts in diet were not correlated with changes in relative abundance of food supply; (3) trophic niche breadth of late juveniles did not expand with declines in their food resources; (4) the mangrove-seagrass ecotone appears to serve as a hunting corridor for predators targeting juvenile fishes moving about the mangroves; and (5) two of the three species examined appeared to give up food in return for safety by avoiding foraging near the mangroves, despite high food availability.
|
2 |
Stochasticity in foraging theory : risk and informationStephens, David William January 1982 (has links)
This thesis considers the importance of adding stochasticity to models of optimal foraging behaviour. The problem is divided into two elements, risk and information, which are treated separately. Part One: Risk. The theoretical and empirical results concerning animal preferences in risky situations are reviewed. Animals are known to show both risk-averse and risk-prone preferences over food reward. It is shown, theoretically, that a simple optimality model mimimizing the probability of death due to starvation accounts for at least some of the observed patterns of preference. The model is generalized to consider preference from arbitrary combinations of mean and variance. Three limitations of the model are treated in detail, that is the importance of starvation by "ruin", mind-changing about risk preferences, and energetic carry-over are discussed. The implications and limitations of these models are outlined. Part Two: Information. The theoretical literature is reviewed, and the problem of information is divided into three elements. A simple model of environmental tracking is studied. The model suggests that there is a trade-off between sensitivity to change and the costs of sampling. The model is tested using great tits (Parus major) foraging in an aviary. The trend in sampling was as predicted, but the birds were less sensitive to change than predicted. The problem of patch sampling is critically discussed. The value of sampling is defined, and this definition is used to compare the assumptions of previous models. Three such problems are treated: the importance of variance in the mixing distribution of patch sub-types; the importance of alternative and unambiguous patch types; and the importance of patch depression. It is concluded that previous models have often over-valued sampling. A simple and natural model of partial patch recognition is considered, and is shown to have empirical support. Implications and limitations of these models of information are discussed.
|
3 |
Paleolithic Ungulate Hunting: Simulation and Mathematical Modeling for Archaeological Inference and ExplanationBeaver, Joseph Edward January 2007 (has links)
Formal models, those which explicitly specify the postulates on which they are based, the development of their 'predictions' from those postulates, and the boundary conditions under which they apply, have the potential to be useful tools in archaeological inference and explanation. Detailed examination of one such model, the mathematical model commonly referred to as the diet breadth or prey choice model, shows that its archaeological application is severely complicated by two factors that are difficult or impossible to specify for prehistoric cases: 1) limits on the amount of meat consumable by a food-sharing group before spoilage or loss to scavengers and 2) hunting failure rates. The former introduce significant uncertainties into the food yield or energetic return term of resource rankings, while the latter affect both resource rankings and the resouce encounter rates leading to prey inclusion or exclusion from the diet. Together, these factors make rigorous diet breadth / prey choice model-based inferences from ungulate archaeofaunas impractical, especially in Paleolithic cases. Following success in recent years in making diet breadth model-based inferences about Paleolithic demography from small game analyses that involved computer simulation modeling of prey species' resilience to hunting pressure, the development and employment of a similar model applied to ungulate species reveals that, in general, the differences in the abilty of populations of different ungulate species to sustain harvest rates are not sufficient to allow the relative representation of ungulate remains in archaeological sites to be a viable basis for human demographic inferences. However, in cases where ungulate remains allow the determination of both prey age structure and sex ratio, it is possible to distinguish low exploitation rates, high exploitation rates, and overhunting. In some cases, the sex ratio data may also alter relative hunting resilience levels in such a way that it may be possible to infer that one species was capable of supporting a larger human population than another.
|
4 |
Behavioural analysis of marine predator movements in relation to heterogeneous environmentsHumphries, Nicolas Edmund January 2013 (has links)
An understanding of the spatio-temporal dynamics of marine predator populations is essential for the sustainable management of marine resources. Tagging studies are providing ever more information about the movements and migrations of marine predators and much has been learned about where these predators spend their time. However little is known about their underlying motivations, making it difficult to make predictions about how apex predators will respond to changing environments. While much progress has been made in behavioural ecology through the use of optimality models, in the marine environment the necessary costs and benefits are difficult to quantify making this approach less successful than with terrestrial studies. One aspect of foraging behaviour that has proved tractable however is the optimisation of random searches. Work by statistical physicists has shown that a specialised movement, known as Lévy flight, can optimise the rate of new prey patch encounters when new prey patches are beyond sensory range. The resulting Lévy flight foraging (LFF) hypothesis makes testable predictions about marine predator search behaviour that can be addressed with the theoretical and empirical studies that form the basis of this thesis. Results presented here resolve the controversy surrounding the hypothesis, demonstrating the optimality of Lévy searches under a broader set of conditions than previously considered, including whether observed Lévy patterns are innate or emergent. Empirical studies provide robust evidence for the prevalence of Lévy search patterns in the movements of diverse marine pelagic predators such as sharks, tunas and billfish as well as in the foraging patterns of albatrosses, overturning a previous study. Predictions from the LFF hypothesis concerning fast moving prey are confirmed leading to simulation studies of ambush predator’s activity patterns. Movement analysis is then applied to the assessment of by-catch mitigation efforts involving VMS data from long-liners and simulated sharks.
|
5 |
Variação intrapopulacional no uso do recurso: modelos teóricos e evidência empírica / Intrapopulational variation in resource use: theoretical models and empiric evidenceCosta, Paula Lemos da 26 July 2013 (has links)
Tradicionalmente, nichos populacionais são descritos como a somatória de todos os recursos utilizados por uma população. Entretanto, diversos estudos mostram que indivíduos dentro de uma população podem usar recursos de forma distinta. Investigamos três maneiras pelas quais indivíduos podem variar quanto ao uso do recurso. Indivíduos podem apresentar a mesma preferência por presas, mas diferir na propensão à adição de novos itens alimentares em sua dieta (Preferências Compartilhadas); indivíduos podem apresentar a mesma presa preferida mas diferirem em suas presas alternativas (Refúgio Competitivo); ou indivíduos podem apresentar presas preferidas distintas (Preferências Distintas). Estudamos os padrões de interação que emergem sob os pressupostos de cada um dos modelos usando redes de interação entre indivíduos e os recursos que eles consomem. Dessa forma, para derivarmos as previsões de cada um dos modelos de uso de recurso, desenvolvemos modelos simples que geram redes de interação segundo regras que seguem os pressupostos dos modelos e confrontamos essas previsões com dados empíricos, comparando a estrutura dessa redes de interação. Encontramos que o modelo que menos se assemelha ao padrão de uso de recurso observado para as populações estudadas foi o modelo de Preferências Compartilhadas. Para as populações estudadas, a variação intrapopulacional na escolha de presas parece estar mais associada a diferenças nas sequências de preferências por presas entre indivíduos e não à propensão desses indivíduos em adicionarem novos recursos às suas dietas. / Traditionally, a population\'s niche is described as the sum of all resources consumed by a population. However, several studies have highlighted that individuals within a population can use resources differently. We investigate three ways in which individuals can vary in their resource use. Individuals can show the same preference for prey, but differ in their likelihood of adding new prey to their diets (Shared Preferences); individuals can share the same top-ranked prey but differ in their alternative prey (Competitive Refuge); or individuals can have different top-ranked prey (Distinct Preferences). We studied the pattern of interaction that emerges under each model\'s assumption using interaction networks between individuals and the resources they consume. In this sense, to derive the predictions associated with each model of resource use, we developed simple models that generates interaction networks according to a set of rules that represent the assumptions of each model and then confronted these predictions with empirical data on interaction networks, by looking at the structure of these interaction networks. We found that the model that least resembles the pattern of resource use observed in the populations studied was the Shared Preferences model. For the studied populations, intrapopulation variation is not associated with individuals sharing the same rank sequence and differing in their willingness to add new resources to their diets. Instead, it seems that differences in the rank sequence of prey choice are more important in structuring the pattern of resource use in these populations.
|
6 |
Blue Crab Population Ecology and Use by Foraging Whooping Cranes on the Texas Gulf CoastGreer, Danielle Marie 2010 December 1900 (has links)
In 2002, a proposal was submitted to divert water from the confluence of the Guadalupe and San Antonio Rivers to San Antonio, Texas. To investigate the potential impacts of diverting water from the Guadalupe Estuary, my research focused on the foraging ecology of the crane and population ecology of the blue crab, a documented crane food.
During winters 2004-2005 and 2005-2006, I examined diets and optimal foraging patterns of territorial adult cranes at Aransas National Wildlife Refuge, Texas. To identify foods of greatest benefit to cranes, I used currencies of optimization to evaluate foraging gain, cost, and efficiency. Foraging benefit differed among foods, depending on the foraging currency used and resource targeted (e.g., energy). Wolfberry fruit, snails, and insects were consumed in the highest quantities, required the least foraging effort, and were generally associated with the highest foraging efficiency. Blue crabs and clams were important sources of protein and biomass.
During September 2003-October 2005, I used novel artificial settlement substrates and modified methods of standard deployment to investigate the spatio-temporal patterns of blue crab terminal settlement and recruitment rates. Monitoring rates in shallow bay habitat and ponds of the interior salt-marsh revealed megalopal crabs were developmentally advanced when arriving to study sites and the extent to which young crabs infiltrated the salt-marsh increased with age. Such findings suggested sites represented optimal terminal settlement habitat and consequently critical nursery habitat. Model selection indicated water temperature before and during embryonic development was the best predictor of megalopal settlement, whereas juvenile recruitment was most influenced by recent precipitation.
I studied the size-specific abundance patterns of blue crabs in and around mature salt-marsh. Using drop-trapping and throw-trapping methods, I collected monthly samples in several habitats during October 2004-March 2006. Interior-marsh habitats contained fewer but larger crabs than bay habitat. Crabs contributing greatest to biomass were smallest (11-30 mm carapace-width) in bay habitat, larger (31-80 mm) along interior-marsh pond edges, and largest (41-130 mm) in interior-marsh open water. Model selection revealed crab density was most influenced by micro-site characteristics (habitat, water column structure type and structural complexity). Overall, shallow bay provided important nursery habitat for young blue crabs and interior marsh ponds were important for dispersing juvenile and adult crabs.
|
7 |
Natural Enemies in a Variable WorldStump, Simon Maccracken January 2015 (has links)
Natural enemies are ubiquitous in nature. In many communities, natural enemies have a major effect on the diversity of their prey. Their effects are very diverse: they can promote or undermine the ability of their prey to coexist through a variety of mechanisms. As such, an important step in understanding how diversity is maintained will be to understand how different forms of predator behavior affect prey coexistence. In this dissertation, I study how two major types of predators affect plant coexistence in two different communities. First, I study natural enemies in tropical forests, using both theory and empirical work. In tropical forests, most natural enemies are thought have a narrow host range, and be distance-responsive (i.e., mainly harm seeds and seedlings that are near adults of their main host). Previous theoretical work has shown that specialized natural enemies can maintain diversity of their prey, whether or not they are distance-responsive. However, it is unknown whether specialist natural enemies are more or less able to promote prey coexistence if they are distance-responsive. Using theoretical models, I show that distance-responsive predators are less able to maintain diversity. Additionally, I show that habitat partitioning does not interfere with the ability of distance-responsive predators to maintain diversity, even if it causes seedling survival to be highest near conspecific adults. From an empirical aspect, I studied the host range of seed-associated fungi. Soilborne microbes, such as fungi, are thought to play an important role in maintaining diversity in tropical forests. However, the microbial community itself is often treated as a black box, and little is known about which microbes are causing major effects, or how 8 specialized seed-microbe associations are. Here I use experimental inoculations to examine the host range and effect of a guild of seed-associated fungi that are thought to be mainly pathogens. I show that fungal species are differentially able to colonize different seed species, and have species-specific effects on seed germination. I show that in many cases, plant phylogeny, and to a lesser extent fungus phylogeny, are good predictors of colonization. Finally, I study how an optimally foraging granivore can promote (or undermine) coexistence amongst annual plants, using theory. Optimal foraging theory is one of the major theories for how predators behave; despite this, little is known about whether an optimally foraging predator could promote coexistence amongst a diverse community of prey. Previous models have shown than two species can coexist due to optimal foraging, but did not test whether multiple prey can coexist, nor if the effect is altered by environmental variation. Here, I show that if the predators specialize on different prey at different times, the predators can allow multiple prey species to coexist. In this case, environmental variation has little effect on the ability of predators to maintain diversity. If the predators are generalists, they cannot maintain diversity. Additionally, I show that generalist predators will create a negative storage effect, undermining coexistence.
|
8 |
Foraging for Demand: Applying Optimal Foraging Theory to Decisions in a Simulated Business ContextKlotz, Jared Lee 01 December 2012 (has links)
Charnov's (1976) marginal value theorem has had success in predicting that animals will optimize net rate of gain when foraging in a patchy environment. The present study attempts to apply the marginal value theorem (MVT) to human behavior in a business setting in 3 Experiments. Businesses also attempt to optimize net rate of gain when choosing to discontinue one product in lieu of another using a product life cycle (PLC). Experiments 1 & 2 attempted to assess human behavior in a business context by varying time necessary to retool and monetary cost of retooling respectively. Experiment 3 attempted to add ecological validity by introducing variability to the PLC. The results of Experiments 1, 2, & 3 indicate that the MVT does not accurately predict human behavior in a business context, though methodological issues may have affected these results. Future research must be conducted in this area.
|
9 |
Variação intrapopulacional no uso do recurso: modelos teóricos e evidência empírica / Intrapopulational variation in resource use: theoretical models and empiric evidencePaula Lemos da Costa 26 July 2013 (has links)
Tradicionalmente, nichos populacionais são descritos como a somatória de todos os recursos utilizados por uma população. Entretanto, diversos estudos mostram que indivíduos dentro de uma população podem usar recursos de forma distinta. Investigamos três maneiras pelas quais indivíduos podem variar quanto ao uso do recurso. Indivíduos podem apresentar a mesma preferência por presas, mas diferir na propensão à adição de novos itens alimentares em sua dieta (Preferências Compartilhadas); indivíduos podem apresentar a mesma presa preferida mas diferirem em suas presas alternativas (Refúgio Competitivo); ou indivíduos podem apresentar presas preferidas distintas (Preferências Distintas). Estudamos os padrões de interação que emergem sob os pressupostos de cada um dos modelos usando redes de interação entre indivíduos e os recursos que eles consomem. Dessa forma, para derivarmos as previsões de cada um dos modelos de uso de recurso, desenvolvemos modelos simples que geram redes de interação segundo regras que seguem os pressupostos dos modelos e confrontamos essas previsões com dados empíricos, comparando a estrutura dessa redes de interação. Encontramos que o modelo que menos se assemelha ao padrão de uso de recurso observado para as populações estudadas foi o modelo de Preferências Compartilhadas. Para as populações estudadas, a variação intrapopulacional na escolha de presas parece estar mais associada a diferenças nas sequências de preferências por presas entre indivíduos e não à propensão desses indivíduos em adicionarem novos recursos às suas dietas. / Traditionally, a population\'s niche is described as the sum of all resources consumed by a population. However, several studies have highlighted that individuals within a population can use resources differently. We investigate three ways in which individuals can vary in their resource use. Individuals can show the same preference for prey, but differ in their likelihood of adding new prey to their diets (Shared Preferences); individuals can share the same top-ranked prey but differ in their alternative prey (Competitive Refuge); or individuals can have different top-ranked prey (Distinct Preferences). We studied the pattern of interaction that emerges under each model\'s assumption using interaction networks between individuals and the resources they consume. In this sense, to derive the predictions associated with each model of resource use, we developed simple models that generates interaction networks according to a set of rules that represent the assumptions of each model and then confronted these predictions with empirical data on interaction networks, by looking at the structure of these interaction networks. We found that the model that least resembles the pattern of resource use observed in the populations studied was the Shared Preferences model. For the studied populations, intrapopulation variation is not associated with individuals sharing the same rank sequence and differing in their willingness to add new resources to their diets. Instead, it seems that differences in the rank sequence of prey choice are more important in structuring the pattern of resource use in these populations.
|
10 |
Drinking from the Magic Well: Studies on Honey Bee Foraging, Recruitment, and Sublethal Stress Responses using Waggle Dance AnalysisOhlinger, Bradley David 05 June 2023 (has links)
Anthropogenic landscape changes threaten our ecologically and economically critical honey bees by decreasing the availability of quality foraging resources. Importantly, waggle dance analysis provides a versatile and relatively cost-effective tool for investigating the obstacles that honey bees face, such as habitat loss, in our changing landscapes. While this emerging tool has improved our understanding of honey bee foraging in specific landscape contexts, additional research is needed to identify broad trends that span across landscapes. For this dissertation, I used waggle dance decoding and analysis to investigate honey bee foraging, and sublethal stress responses, across three ecologically distinct landscapes in Virginia. In Chapter 1, I introduce waggle dances as a model study system for investigating honey bee foraging and sublethal stress responses by summarizing modern methodological advances in its analysis and emerging research gaps. In Chapter 2, I tested the effects of sublethal imidacloprid exposure on honey bee foraging and recruitment using a semi-field feeder experiment. In doing so, I report that honey bees decreased their foraging, but not recruitment, to an imidacloprid-laced sucrose solution, compared to a control solution. Together, these effects could potentially harm honey bee health by increasing their exposure to pesticides and decreasing their food intake. In Chapter 3, I compared the foraging distances communicated by waggle dancing nectar and pollen foragers across landscapes to explore the economic forces driving foraging to these resources. I observed higher overall and monthly nectar foraging distances compared to pollen foraging distances. Such results suggest that nectar foraging cost dynamics are driven by supply, while pollen foraging cost dynamics are driven by demand. In Chapter 4, I used waggle dance decoding to map and quantify foraging to agricultural grasslands in a mixed-use landscape. In doing so, I demonstrate that honey bees recruit to agricultural grasslands throughout the season, but that this land type was not more attractive than the broader landscape after correcting for foraging distance, which is a relevant cost that flying bees must consider. Additionally, I qualitatively observe a foraging hot spot, representing high honey bee interest, over a highly heterogenous section of the landscape. The collective results of this chapter identify agricultural grasslands as a potential management target and support the importance of landscape heterogeneity to honey bees/pollinators. In Chapter 5, I used waggle dance decoding to investigate honey bee foraging spatial patterns in the context of optimal foraging theory. In particular, I explore whether co-localized honey bee colonies forage optimally by converging on the same resource patches, or by partitioning the landscape in to distinct foraging territories. Spatial analysis revealed that the colonies widely distributed their foraging at the landscape-scale, with dances from the same and different colonies being similarly distributed, while also establishing distinct, patch-scale, colony-specific, foraging aggregations. Together, these results suggest that the honey bee foraging system produces an emergent foraging pattern that may decrease both within- and among-colony foraging competition. Finally, in Chapter 6, I place my research findings in the context of historical and current trends in honey bee behavioral ecology. Overall, my dissertation improves our understanding of honey bee foraging ecology across landscape contexts using waggle dance analysis, while demonstrating its versatility and effectiveness as a tool for ecologists. / Doctor of Philosophy / Honey bees collect nectar (carbohydrate source) and pollen (protein source) from flowers as their food for survival and reproduction. Human activities, such urbanization, change landscapes and threaten our critically important honey bees by decreasing the availability of flower-rich habitats. Importantly, honey bees share the location of good food sources with their nest mates using a communication behavior called the waggle dance. Interestingly, scientists can estimate the approximate location of the food sources communicated by waggle dancing bees through close observation and cutting-edge analysis. Therefore, we can "decode" honey bees' waggle dances to map their food collection, or foraging, patterns and investigate the obstacles that they face in our changing landscapes. For this dissertation, I used waggle dance decoding and analysis to investigate honey bee foraging across three different landscapes in Virginia. In Chapter 1, I introduce waggle dances as a tool for investigating honey bee behavior by summarizing the modern improvements in its analysis and areas where research is needed. In Chapter 2, I tested the effects of a sublethal exposure to a pesticide, imidacloprid, by observing the foraging and waggle dance behavior of bees visiting feeders with artificial food. I report that honey bees decreased their foraging, but not recruitment, while collecting an imidacloprid-laced sugar solution, compared to a solution without imidacloprid. In Chapter 3, I compared the foraging distances communicated by waggle dancing nectar and pollen foragers across landscapes to explore the economic forces driving foraging to these resources. I observed higher overall and monthly nectar foraging distances compared to pollen foraging distances. Such results suggest that nectar foraging is driven by supply, while pollen foraging is more driven by demand. In Chapter 4, I used waggle dance decoding to map and quantify foraging to agricultural grasslands (pastures and hay fields) in a landscape characterized by diverse land uses. In doing so, I demonstrate that honey bees recruit to agricultural grasslands throughout the season, but that this land type was not more attractive than the broader landscape after correcting for foraging distance. Additionally, I qualitatively observe a foraging hot spot, representing high honey bee interest, over a highly heterogenous section of the landscape. The collective results of this chapter identify agricultural grasslands as a potential management target and support the importance of landscape heterogeneity to honey bees/pollinators. In Chapter 5, I used waggle dance decoding to investigate the spatial patterns of honey bee foraging in the context of optimal foraging theory, which attempts to explain efficient resource collection strategies. In particular, I explore whether neighboring honey bee colonies forage optimally by converging on the same resource patches, or by dividing the landscape in to distinct foraging territories. We found that colonies distributed their foraging widely at the landscape-scale, with dances locations from the same and different colonies being similarly distributed, while also establishing distinct, patch-scale, colony-specific, foraging areas. Together, these results suggest that honey bees use a foraging strategy that decreases both within- and among-colony foraging competition. Finally, in Chapter 6, I place my research findings in the context of historical and current trends in honey bee behavioral ecology. Overall, my dissertation uses waggle dance analysis to improve our understanding of honey bee foraging behavior, while demonstrating its versatility and effectiveness as a tool for ecologists.
|
Page generated in 0.0922 seconds