• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 209
  • 28
  • 25
  • 18
  • 8
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • Tagged with
  • 364
  • 234
  • 96
  • 43
  • 38
  • 36
  • 32
  • 30
  • 26
  • 25
  • 24
  • 24
  • 24
  • 24
  • 24
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Multiple photonic response in organic-based magnetic semiconductor

Yoo, Jung-Woo. January 2007 (has links)
Thesis (Ph. D.)--Ohio State University, 2007. / Full text release at OhioLINK's ETD Center delayed at author's request
102

Energy Transfer and Optical Memory Studies of d^10 Closed Shell Homo and Heterometallic Dicyanide Systems

Colis, Julie Clarissa F. January 2004 (has links) (PDF)
No description available.
103

Symmetric Gain Optoelectronic Mixers for LADAR Applications

Drew, Stephen January 2009 (has links) (PDF)
No description available.
104

Characterization of Semiconductor Nanocrystal Assemblies as Components of Optoelectronic Devices

Malfavon-Ochoa, Mario, Malfavon-Ochoa, Mario January 2017 (has links)
This dissertation presents new insight into the ability of small molecule passivated NCs to achieve intimate approach distances, despite being well passivated, while developing guiding principles in the area of ligand mediated microstructure control and the resulting macroscopic optical and electronic properties that close packing of high quality NCs enables. NC ligand coverage will be characterized quantitatively through thermogravimetric analysis (TGA), and qualitatively by photoluminescence and electroluminescence, in the case of functional devices; illustrating the importance of practitioner dependent control of ligand coverage through variations in the dispersion precipitation purification procedure. A unique examination of the relative contribution of energy and charge transfer in NC LEDs will demonstrate the ability to achieve charge transfer, at a level competitive with energy transfer, to well passivated NCs at various wt% loading in a polymer matrix. The observation of potential dependent recombination zones within an active layer further suggest novel, NC surface passivation mediated control of blend microstructure during solution processing towards the development of a bi-continuous network. Next, NC self-assembly and resulting microstructure dependent optical and electronic properties will be examined through electroluminescence and high-resolution transmission electron microscopy (TEM) micrographs of functional NC/polymer bulk heterojunction LEDs. The joint characterization of NC optical properties, and self-assembly microstructure provide a deeper understanding of the significant and inseparable effects of minimal changes in NC surface passivation on structure and function, and emphasize the potential to rely on strongly passivating ligands to control physical properties and processing parameters concurrently towards higher efficiency devices via low cost processing. Finally, micro-contact printing of blazed transmission gratings, using stable dispersions of core and core/shell NCs will be shown to produce close packed assemblies of NCs forming near-wavelength luminescent superstructures separated in space. We show the dominant contribution of a two-monolayer thick sharp interface CdS shell to the diffraction efficiency, and necessarily the refractive index, of the NCs, independent of core size. Utilization of these gratings as in-coupling elements at various positions within a device architecture are also examined. These new observations were achieved by unprecedented control of NC architecture during dispersion processing, while maintaining high luminescence, made possible by optimized NC surface passivation. These studies enable the formation of new LED architectures, and new optoelectronic devices based on angle resolved, monochromatic fluorescence from diffraction gratings prepared from simple solution processing approaches. Further, the novel observation of angle amplified interfering fluorescence from these features is argued to be a result of long range radiative coupling and superradiance enabled by the monodispersity and high-quality NC surface passivation described herein.
105

Synthesis, structures, photophysics and optoelectronic properties of metalated molecular materials derived from multifunctional chromophores

He, Ze 01 January 2006 (has links)
No description available.
106

A New Chromophoric Organic Molecule Toward Improved Molecular Optoelectronic Devices

Halbert, Jason Paul 12 1900 (has links)
The characterization of 2,3,6,7,10,11-hexabromotriphenylene, Br6TP, is presented toward its potential use as an n-type organic semiconductor and metal-free room temperature phosphor. The crystal structure shows both anisotropic two-dimensional BrBr interactions and inter-layer ?-stacking interactions. Photophysical characteristics were evaluated using solid-state photoluminescence and diffuse reflectance spectroscopies, revealing significantly red-shifted excitations in the visible region for the yellow solid material (compared to ultraviolet absorption bands for the colorless dilute solutions). Correlation of spectral, electrochemical, and computational data suggest the presence of an n-type semiconducting behavior due to the electron-poor aromatic ring. The material shows excellent thermal stability as demonstrated by thermogravimetric analysis and infrared spectra of a thin film deposited by thermal evaporation. The potential for Br6TP and its analogues toward use in several types of photonic and electronic devices is discussed.
107

Device Patterning, Contact, Transport, and Light Emission of Halide Perovskite

Lin, Chun-Ho 04 1900 (has links)
Halide perovskite-based photovoltaics are the fastest-growing solar technology in nowadays. Because of the low production costs, perovskite-based photovoltaics are competitive for commercial applications in the marketplace. Additionally, due to the remarkable optoelectronic properties, perovskites are also promising for other optoelectronics, including photodetector, light emitting diode and laser. However, for commercial applications in optoelectronics, there are still several crucial obstacles: (i) a robustness patterning technique is missing for nanofabrication of perovskite devices, (ii) hysteresis effect exits in perovskite devices, and (iii) the stability issue of perovskite. To address these problems, we have performed the fundamental study on perovskite from four aspects: orthogonal patterning, metal contact, carrier transport, and light emission stability. Due to the ionic nature, halide perovskite can be easily dissolved by most of the commonly used organic solvents, which means conventional lithography patternings are not applicable for perovskite, limiting the extensive applications of perovskite electronics. To adress this, we introduced chlorobenzene and hexane and proposed an orthogonal electron beam lithography method for fabrication of perovskite nanodevices without damaging their electrical and optical properties. By this orthogonal method, we fabricated a two-dimensional single crystalline (C6H5C2H4NH3)2PbI4 photodetector with device channel length of few hundred nanometers and outstanding photosensing capability. The hysteresis effect in perovskite is highly related to the interfacial recombination and ionic transport, which requires abundant fundamental understanding on perovskite contact and transport to help to solve this issue. In this study, we performed the lithography patterning method and the transfer length measurement on cm-sized single crystalline perovskite bulk single crystal for indicating the metal contact interface and charge transport, which are requared for efficienct device design and improving the device performance. For stable light emission, we fabricated perovskite nanowires in the nanopores of anodic aluminum oxide substrate using an inkjet printing technique. Lasing behaviors and color-tunable light emission of perovskite nanowires are demonstrated in this study, and the photostability is much better than reported all-inorganic perovskite quantum dots. We believe these fundamental studies provide solutions to some critical issues in current perovskite technology, thus paving the way for future optoelectronic applications.
108

Role of surface ligand chemistry on shape evolution and optoelecronic properties of direct band gap semiconductors

Teunis McLeod, Meghan January 2017 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The expansion of the applications of direct band gap semiconductor nanocrystals (NCs) has been a result of the control colloidal synthetic methods offer on the optoelectronic properties. These properties are readily controlled by the surface chemistry and even a small change in the surface passivating ligand can show profound effects. Furthermore, the choice of surface passivating ligand also impacts the NC shape evolution, which in turn influence the surface area, quantum yield, and charge transport properties that are critical to optimize device fabrication. In this dissertation, the unique aspects of surface chemistry that control both NC shape evolution and optoelectronic properties are investigated. We began by investigating how surface chemistry controls the shape evolution of methyl ammonium lead bromide (CH3NH3PbBr3) perovskite NCs. In addition to the surface passivating ligand, the reaction temperature and solvent system were also examined. Through a series of control experiments, the critical parameter for the formation of quantum wires (QWs) was found to be the presence of a long chain acid, while the quantum platelets (QPLs) required a long chain amine and chlorinated solvent, and quantum cube (QC) formation was kinetically driven. The higher ordered stacking of the QPLs and bundling of the QWs was also found to be controlled by surface ligand chemistry. Next we further examined how surface chemistry impacts shape evolution, but in the system of metal chalcogenide NCs. We developed a versatile, low temperature, and gram scale synthesis of QWs, QPLs, and quantum rods (QRs) using both cadmium and zinc as metal precursors and sulfur and selenium as chalcogenide precursors. Through systematic investigation of both the surface chemistry and reaction progression, the growth and formation mechanism was also determined. The 1D QW growth required a long chain amine while the QPLs required the presence of both a long and short chain amine to drive 2D growth. Finally, the QRs would found to be a kinetically-controlled process. Ultrasmall semiconductor NCs are known to possess high surface to volume ratios and therefore even a minute change in surface chemistry will have a significant impact on the optoelectronic properties. Our investigation focused on (CdSe)34 NCs, and how exchanging native amine ligands with various chalcogenol based ligands influences these properties. These NCs lie in the strong confinement regime and therefore have a higher probability of undergoing exciton delocalization, resulting in red shifts of the first excitonic peak and reduction of the optical band gap. Additionally, we examined different characteristics of the ligand (level of conjugation, electron withdrawing or donating nature of para-substitution, binding mode and head group) to examine how these parameters impact exciton delocalization. We observed the highest shift in the optical band gap (of 650 meV) after exchanging the native amine ligands with pyrene dithiocarbamate. Through this investigation it was determined that ligand characteristics (specifically conjugation and binding mode) have significant influence in the proposed hole delocalization. Finally, we continued the investigation of how surface chemistry controls optoelectronic properties of ultrasmall NCs, but expand our work to those of methyl ammonium lead halide. We developed a low temperature and colloidal synthesis of white-light emitting NCs with a diameter of 1.5 nm. Through precise manipulation of the surface halide ions, it was possible to tailor the emission to match that of nearly pure white light.
109

Development of a Molecular Optoelectronic Transducer

O'Donnell, Ryan M. 01 July 2010 (has links)
No description available.
110

Application of Optimization Techniques to the Optical Design of a Laser Seeker

Allemeier, David William 01 January 1979 (has links) (PDF)
This report describes the development of a computer model for the design of a laser seeker optical system. A laser seeker is a device that detects pulsed laser energy. The computer model is configured to design the seeker optics based on the following performance criteria: Sensitivity to laser energy, which can be related to target acquisition range; optical field of view; and seeker optics cross section area. The design is defined by four variables and a set of fixed parameters, and is configured using computer optimization with both a direct search and a random search being used. A superior design is selected from comparison of many sets of variables based on the value of an objective function made up of some of all of the performance criteria listed above and additional penalty factors applied for design constraint violations. The computer model contains design blocks for the detector, the preamplifier, and the optical elements of the seeker. There is also a computer ray trace routine to evaluate optical performance. The model was run with roar different objective functions, and the resulting seeker designs were analyzed. A detail listing of the computer program is contained in Appendix B.

Page generated in 0.0397 seconds