51 |
Order restricted inferences on parameters in generalized linear models with emphasis on logistic regressionReischman, Diann January 1997 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 1997. / Typescript. Vita. Includes bibliographical references (leaves 174-178). Also available on the Internet.
|
52 |
Multiple comparison techniques for order restricted modelsNashimoto, Kane, January 2004 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2004. / Typescript. Vita. Includes bibliographical references (leaves 159-165). Also available on the Internet.
|
53 |
Multiple comparison techniques for order restricted models /Nashimoto, Kane, January 2004 (has links)
Thesis (Ph. D.)--University of Missouri-Columbia, 2004. / Typescript. Vita. Includes bibliographical references (leaves 159-165). Also available on the Internet.
|
54 |
Statistical inference for normal means with order restrictions and applications to dose-response studies /Davis, Karelyn Alexandrea, January 2004 (has links)
Thesis (M.Sc.)--Memorial University of Newfoundland, 2004. / Bibliography: leaves 94-103.
|
55 |
Rank-sum test for two-sample location problem under order restricted randomized designSun, Yiping. January 2007 (has links)
Thesis (Ph. D.)--Ohio State University, 2007. / Title from first page of PDF file. Includes bibliographical references (p. 121-124).
|
56 |
Some further Results on the Height of Lattice PathKatzenbeisser, Walter, Panny, Wolfgang January 1990 (has links) (PDF)
This paper deals with the joint and conditional distributions concerning the maximum of random walk paths and the number of times this maximum is achieved. This joint distribution was studied first by Dwass [1967]. Based on his result, the correlation and some conditional moments are derived. The main contributions are however asymptotic expansions concerning the conditional distribution and conditional moments. (author's abstract) / Series: Forschungsberichte / Institut für Statistik
|
57 |
Modélisation de la dépendance pour des statistiques d'ordre et estimation non-paramétrique. / Modelling the dependence of order statistics and nonparametric estimation.Fischer, Richard 30 September 2016 (has links)
Dans cette thèse, on considère la modélisation de la loi jointe des statistiques d'ordre, c.à.d. des vecteurs aléatoires avec des composantes ordonnées presque sûrement. La première partie est dédiée à la modélisation probabiliste des statistiques d'ordre d'entropie maximale à marginales fixées. Les marginales étant fixées, la caractérisation de la loi jointe revient à considérer la copule associée. Dans le Chapitre 2, on présente un résultat auxiliaire sur les copules d'entropie maximale à diagonale fixée. Une condition nécessaire et suffisante est donnée pour l'existence d'une telle copule, ainsi qu'une formule explicite de sa densité et de son entropie. La solution du problème de maximisation d'entropie pour les statistiques d'ordre à marginales fixées est présentée dans le Chapitre 3. On donne des formules explicites pour sa copule et sa densité jointe. On applique le modèle obtenu pour modéliser des paramètres physiques dans le Chapitre 4.Dans la deuxième partie de la thèse, on étudie le problème d'estimation non-paramétrique des densités d'entropie maximale des statistiques d'ordre en distance de Kullback-Leibler. Le chapitre 5 décrit une méthode d'agrégation pour des densités de probabilité et des densités spectrales, basée sur une combinaison convexe de ses logarithmes, et montre des bornes optimales non-asymptotiques en déviation. Dans le Chapitre 6, on propose une méthode adaptative issue d'un modèle exponentiel log-additif pour estimer les densités considérées, et on démontre qu'elle atteint les vitesses connues minimax. L'application de cette méthode pour estimer des dimensions des défauts est présentée dans le Chapitre 7 / In this thesis we consider the modelling of the joint distribution of order statistics, i.e. random vectors with almost surely ordered components. The first part is dedicated to the probabilistic modelling of order statistics of maximal entropy with marginal constraints. Given the marginal constraints, the characterization of the joint distribution can be given by the associated copula. Chapter 2 presents an auxiliary result giving the maximum entropy copula with a fixed diagonal section. We give a necessary and sufficient condition for its existence, and derive an explicit formula for its density and entropy. Chapter 3 provides the solution for the maximum entropy problem for order statistics with marginal constraints by identifying the copula of the maximum entropy distribution. We give explicit formulas for the copula and the joint density. An application for modelling physical parameters is given in Chapter 4.In the second part of the thesis, we consider the problem of nonparametric estimation of maximum entropy densities of order statistics in Kullback-Leibler distance. Chapter 5 presents an aggregation method for probability density and spectral density estimation, based on the convex combination of the logarithms of these functions, and gives non-asymptotic bounds on the aggregation rate. In Chapter 6, we propose an adaptive estimation method based on a log-additive exponential model to estimate maximum entropy densities of order statistics which achieves the known minimax convergence rates. The method is applied to estimating flaw dimensions in Chapter 7
|
58 |
Simulating Univariate and Multivariate Burr Type III and Type XII Distributions Through the Method of L-MomentsPant, Mohan Dev 01 August 2011 (has links)
The Burr families (Type III and Type XII) of distributions are traditionally used in the context of statistical modeling and for simulating non-normal distributions with moment-based parameters (e.g., Skew and Kurtosis). In educational and psychological studies, the Burr families of distributions can be used to simulate extremely asymmetrical and heavy-tailed non-normal distributions. Conventional moment-based estimators (i.e., the mean, variance, skew, and kurtosis) are traditionally used to characterize the distribution of a random variable or in the context of fitting data. However, conventional moment-based estimators can (a) be substantially biased, (b) have high variance, or (c) be influenced by outliers. In view of these concerns, a characterization of the Burr Type III and Type XII distributions through the method of L-moments is introduced. Specifically, systems of equations are derived for determining the shape parameters associated with user specified L-moment ratios (e.g., L-Skew and L-Kurtosis). A procedure is also developed for the purpose of generating non-normal Burr Type III and Type XII distributions with arbitrary L-correlation matrices. Numerical examples are provided to demonstrate that L-moment based Burr distributions are superior to their conventional moment based counterparts in the context of estimation, distribution fitting, and robustness to outliers. Monte Carlo simulation results are provided to demonstrate that L-moment-based estimators are nearly unbiased, have relatively small variance, and are robust in the presence of outliers for any sample size. Simulation results are also provided to show that the methodology used for generating correlated non-normal Burr Type III and Type XII distributions is valid and efficient. Specifically, Monte Carlo simulation results are provided to show that the empirical values of L-correlations among simulated Burr Type III (and Type XII) distributions are in close agreement with the specified L-correlation matrices.
|
59 |
Use of Ranking Information From Unmeasured Units in Ranked Set and Judgement Post Stratified SamplesSgambellone, Anthony James January 2013 (has links)
No description available.
|
60 |
Inference on correlation from incomplete bivariate samplesHe, Qinying 25 June 2007 (has links)
No description available.
|
Page generated in 0.1098 seconds