1 |
In vivo evaluation of riboflavin and Bacillus Subtilis on growth performance and intestinal health of male broilers challenged with coccidiosisPoudel, Sabin 07 August 2020 (has links)
The effects of supplementation of riboflavin along with Bacillus subtilis was investigated on growth performance and intestinal health of broilers under coccidial challenge. Treatments are 3 × 2 × 2 factorial arrangement, which includes 3 levels of riboflavin (0.75, 6.6 (recommended), and 20 ppm), with or without Bacillus subtilis, and with or without coccidial challenge. Coccidial challenge impaired the intestinal morphology and reduced body weight (BW), body weight gain (BWG), and feed intake and increased FCR between d 14-28. However, the cocci impact on birds was reduced along with age, as the effects on internal organs was reduced, which allowed birds to recover. However, coccidiosis reduced overall BW and BWG and increased abdominal fat pad weight and slight woody breast incidence. In conclusion, riboflavin at tested level was unable to enhance growth performance and intestinal health, but its inclusion altered birds response to coccidial challege other than feeding Bacillus subtlis alone.
|
2 |
Study of the role of pax transcription factors and SP-related factors in C. Elegans organ developmentSleiman, Sama 07 January 2008 (has links)
No description available.
|
3 |
Mi-2 chromatin remodeling factor functions in sensory organ development through proneural gene repression in DrosophilaYAMASAKI, Yasutoyo, NISHIDA, Yasuyoshi January 2006 (has links)
No description available.
|
4 |
Molecular, somatic, and performance characteristics of broilers exhibiting woody breast myopathy, and the effects of dietary and challenge intervention strategiesJia, Linan 10 December 2021 (has links)
Woody breast (WB) is a meat quality problem that has caused significant economic losses for the poultry industry. Ross × Ross 708 chicks were randomly assigned to a 3 (diet) × 2 (cocci challenge) × 2 (sex) factorial arrangement of treatments. The three diets included the control diet (corn-soybean meal basal diet), antibiotic diet (basal diet + 6.075 mg bacitracin /kg feed), and probiotic diet (basal diet + 2.2 × 108 CFU Bacillus subtilis PB6 /kg feed). Birds in the cocci challenge treatment group received 20 × the live cocci vaccine as an inoculum on d 14. Growth performance and WB score were measured to understand the effects of management factors (diet and coccidiosis) on broiler growth and WB development. Results indicated that dietary bacitracin and Eimeria spp. increased WB incidence, body weight, and growth rate. Bacillus subtilis increased WB incidence in male broilers without affecting body weight and growth rate. The association of the development of the internal organs and skeletal muscle with WB myopathy incidence in broilers were evaluated. The digestion organs (proventriculus and gizzard) and the skeletal muscles (drumsticks, thighs, and wings) developed at lower rates in birds with WB. In addition, the effects of the dietary and challenge interventions on the gut microbiota diversity and composition associated with WB in broilers were investigated. Results showed that cocci challenge
altered gut microbiota composition and various biosynthetic pathways. Maintaining a healthy gut ecosystem is critical for the reduction of WB incidence in broilers. Gene expression related to oxidative stress, gut barrier function, and inflammation in jejunal mucus was investigated. Results showed that WB is related to decreased mucin expression (MUC6) in mucus, indicating a correlation between WB incidence and a lessening of the secretion of gel-forming mucin. In conclusion, dietary antibiotic and probiotic and challenge intervention strategies increased WB incidence, and microbiota composition and gut health gene expression differed in broilers exhibiting WB myopathy.
|
5 |
Restriction of Rho signaling by the RhoGAP STARD13 integrates growth and morphogenesis in the pancreasPetzold, Kristin 11 December 2012 (has links)
Diese Dissertation analysiert zum ersten Mal STARD13, ein Protein mit einer RhoGAP-Domäne, und dessen Rolle als essentiellen Regulator der Pankreasarchitektur im Mausembryo. Es wird gezeigt, dass Stard13 anfangs im pankreatischen Endoderm exprimiert wird und später in den “Epithelspitzen” angereichert ist. Konditionelle Ablation von Stard13 im Mauspankreas beeinflusst die normale Epithelmorphogenese und die Organisation der “Epithelspitzen”. Das beeinträchtigt die Proliferation der Pankreasvorläuferzellen und führt zu Organhypoplasie. Dabei reguliert STARD13 örtlich und zeitlich Rho-Signale, die für die Morphogenese essentiell sind. Desweiteren werden die Mechanismen, die für die Entwicklung des Pankreasepithels in ein funktionierendes Organ notwendig sind, neu beleuchtet. Es wird zum Beispiel eine funktionelle Verbindung zwischen Rho-vermittelter Kontrolle der Epithelumgestaltung und der Determinierung der Organgröße hergestellt. Dabei spielt die reziproke Interaktion von actin-MAL-SRF and MAPK Signalen eine wichtige Rolle. / The development of functional organ architecture relies on coordinated morphogenesis and growth. In the developing pancreas, the branching epithelium is organized in discrete domains that delineate one specific domain of progenitor cells at the tip of the branches. Very little is known about branching morphogenesis in the pancreas and how it is coordinated with proliferation. This thesis presents the first analysis of the RhoGAP-domain-containing protein STARD13 and its role as an essential regulator of pancreas tissue architecture in the mammalian embryo. It is shown that Stard13 is expressed in the pancreatic endoderm and enriched at the distal tip of the branching epithelium. Conditional ablation of Stard13 expression in the mouse pancreas disrupts epithelial morphogenesis and tip domain organization, resulting in hampered proliferation of pancreatic progenitors and subsequent organ hypoplasia. Stard13 acts by regulating Rho signaling spatially and temporally during pancreas development. This thesis provides new insights into the mechanisms that shape pancreatic epithelium to create a mature organ and establishes a functional link between Rho-mediated control of epithelial remodeling and organ size determination, involving reciprocal interaction of actin-MAL-SRF and MAPK signaling.
|
6 |
Molecular Genetic Analysis of CRELD1 in Patients with Heterotaxy DisorderZhian, Samaneh 01 January 2011 (has links)
Heterotaxy refers to the abnormal arrangement of internal organs in relation to each other. Model organism studies have shown that functions of more than eighty genes are required for normal asymmetric left-right organ development. CRELD1 has been shown to be necessary for proper heart development and mutations in CRELD1 are known to increase risk of cardiac atrioventricular septal defects (AVSD). AVSD is the most common form of heart defect associated with heterotaxy, and we have previously shown that some individuals with heterotaxy-related AVSD have mutations in CRELD1. Therefore, we propose to examine the CRELD1 gene in a large sample of patients with heterotaxy syndrome. Our goal was to determine if mutations in CRELD1 are associated with other manifestations of heterotaxy or if they only coincide with AVSD. To achieve this aim, a sample size of 126 patients with heterotaxy collected by Dr. Belmont, Baylor college of Medicine, Texas, with approximately 66% of the heterotaxy population with different types of heart defects, were used for this study. Ten exons, promoter regions, and regulatory elements in the introns of CRELD1 gene were sequenced and analyzed. In this study three different heterozygous missense mutations in CRELD1 were identified in three unrelated individuals. These three individuals were diagnosed with different forms of heart defects in addition to AVSD. All three mutations were identified in highly conserved regions of CRELD1 possibly altering the CRELD1 properties. This demonstrates that mutations in CRELD1 may increase the susceptibility of AVSD in heterotaxy population. This information can help us to find factors effecting disease susceptibility in heterotaxy patients since the heart defects are a complex trait with incomplete penetrance.
|
7 |
Conserved Genetic Modules Controlling Lateral Organ Development: Polycomb Repressive Complex 2 and ASYMMETRIC LEAVES1 Homologs in the Lower Eudicot Aquilegia (Columbine).Gleason, Emily Jean 18 September 2013 (has links)
Development in multicellular organisms relies on establishing and maintaining gene expression profiles that give cells identity. Transcription factors establish gene expression profiles by integrating positional, temporal, and environmental cues to regulate genes essential for a cell's identity. These signals are often short lived while the differentiated state may persist for a long time. Epigenetic factors maintain these gene expression profiles by making heritable chemical alterations to target gene chromatin to stabilize transcriptional patterns. Here we explore the evolution and function of an epigenetic regulator, the Polycomb Repressive Complex 2 (PRC2), and a transcription factor, ASYMMETRIC LEAVES 1 (AS1) , in the lower eudicot Aquilegia. PRC2 is an important and deeply conserved epigenetic regulator, which is critical to many plant developmental processes, including the regulation of major developmental transitions and lateral organ development. We find that Aquilegia has a relatively simple complement of PRC2 genes that are expressed throughout development. Contrary to findings in other plant species, two members of the Aquilegia PRC2, AqSWN and AqCLF, are not imprinted in Aquilegia endosperm. Using virusinduced gene silencing (VIGS), we determined that Aquilegia PRC2 regulates aspects of lateral organ development, including branching within the leaf and lamina expansion, along with caroteinoid production in floral organs. PRC2 targeting of several floral MADS box genes may be conserved in Aquilegia, but other known targets such as the class I KNOX gene are not. AS1 is a transcription factor that plays a conserved role in controlling differentiation and polarity of lateral organs. In species with simple leaves, AS1 promotes cell determination by suppressing the expression of the class I KNOX genes in leaf primordia and regulates abaxial-adaxial polarity in the developing leaf. However, in species with compound leaves, KNOX genes and AS1 often work together to control leaflet initiation and arrangement. In Aquilegia, AqAS1 appears to primarily contribute to proper regulation of class I KNOX genes with a more minor role in leaflet polarity and positioning. Most interestingly, these combined datasets suggest that contrary to the widely held model, class I KNOX genes are neither necessary nor sufficient for leaf complexity in Aquilegia.
|
8 |
Comparative development of lateral organs in Arabidopsis thalianaLe Gloanec, Constance 08 1900 (has links)
Les plantes présentent une incroyable diversité de tailles, formes et couleurs, étroitement liée à certaines de leurs fonctions biologiques telles que la photosynthèse, la reproduction, etc. De ce fait, la façon dont ces organismes multicellulaires acquièrent des formes complexes est une question clé en biologie du développement. La morphologie des organes végétaux résulte en effet de la modulation, à l’échelle cellulaire, de patrons d’expression génétique, de croissance et de différenciation. Bien que la morphogénèse ait été largement étudiée d’un point de vue moléculaire, nous ne savons toujours pas comment ces réseaux génétiques sont traduits en formes biologiques.
Le but de ce projet de recherche est donc d’étudier le développement des organes latéraux (feuilles juvéniles, feuilles caulinaires et organes floraux, id sépales, pétales et anthères) chez l’espèce modèle Arabidopsis thaliana. Afin d’approcher la question du rôle des interactions complexes entre cellules et organes lors du développement, nous nous intéressons à la variabilité entre les organes, mais aussi à la variabilité cellulaire intrinsèque de chaque organe. Nous avons donc testé (1) si la diversité de formes observées chez les organes latéraux résulte de modulations d’un programme développemental commun; (2) si la croissance et le développement des organes latéraux est un phénomène stochastique ou dépend de mécanismes sous-jacents spécifiques. Pour ce faire, nous utilisons une approche multidisciplinaire basée sur la génétique, la microscopie confocale et l’analyse d’images 3D pour extraire les patrons de croissance inhérents aux différents organes.
Les résultats de la première étude (Chapitre 2) montrent que la forme des organes dépend de l’équilibre entre croissance et différentiation, dont la régulation précise permet l'acquisition de fonctions hautement spécialisées. La feuille caulinaire, par exemple, présente un retard de différenciation qui permet une activité morphogénétique prolongée et une redistribution de la croissance. À travers la suppression transitoire de la croissance lors des premiers stades de développement, la trajectoire développementale de la feuille caulinaire permet sa double fonction, à la fois protectrice et photosynthétique.\par
La deuxième étude (Chapitre 3), quant-à-elle, s’intéresse aux comportements des cellules individuelles, dont la croissance, bien que contrôlée par des informations positionnelles, est souvent hétérogène. Cette variabilité résulte de la différenciation de cellules spécialisés, les stomates, qui suivent un programme de développement spécifique. Le comportement autonome de ces cellules, asynchrone, est la principale source de variabilité dans des tissus dont la croissance est autrement homogènes.
Dans l’ensemble, cette thèse a permis de mettre en lumière l’importance de la temporalité lors du développement des organes végétaux. Que ce soit à l’échelle de l’organe, du tissu ou de la cellule, la modulation et la synchronisation de la croissance et de la différentiation sont nécessaires à l’acquisition des formes stéréotypiques des organes et à leur complexité fonctionnelle. / Plants display an incredible diversity of sizes, shapes, and colors, closely linked to some of their biological functions, such as photosynthesis, reproduction, etc. How these multicellular organisms acquire complex shapes is, therefore, a key question in developmental biology. The morphology of plant organs results from cell-level modulation of patterns of gene expression, growth, and differentiation. Although morphogenesis has been extensively studied from a molecular point of view, how genetic networks are translated into biological forms is still unclear.
Thus, the aim of this research project is to study the development of lateral organs (rosette leaves, cauline leaves, and floral organs, i.e. sepals, petals, and anthers) in the model species Arabidopsis thaliana. To address the question of the role of complex cell-organ interactions during development, we are interested not only in variability between organs but also in the intrinsic cellular variability of each organ. We, therefore, tested (1) whether the diversity of shapes observed in lateral organs results from modulations of a common developmental program; (2) whether the growth and development of lateral organs is a stochastic phenomenon or depends on specific underlying mechanisms. To this end, we are using a multidisciplinary approach based on genetics, confocal microscopy, and 3D image analysis to extract the growth patterns inherent in the different organs.
The results of the first study (Chapter 2) show that organ shape depends on the balance between growth and differentiation, which fine regulation enables the acquisition of highly specialized functions. The cauline leaf, for example, shows a delay in differentiation that allows for prolonged morphogenetic activity and growth redistribution. Through the transient growth suppression at early stages, the cauline leaf developmental trajectory allows for its dual function, from protection to photosynthesis.
The second study (Chapter 3) focuses on the behavior of individual cells, whose growth, although controlled by positional information, is often heterogeneous. This variability results from the differentiation of specialized cells, the stomata, which follow a specific developmental program. The autonomous, asynchronous behavior of these cells is the main source of variability in tissues whose growth is otherwise homogeneous.
Overall, this thesis has shed light on the importance of timing in plant organ development. Whether at the organ, tissue, or cell level, modulation and synchronization of growth and differentiation are necessary for the acquisition of stereotypic organ shapes and functional complexity.
|
Page generated in 0.0975 seconds