21 |
Approaches and evaluation of architectures for chemical and biological sensing based on organic thin-film field-effect transistors and immobilized ion channels integrated with silicon solid-state devicesFine, Daniel Hayes, 1978- 28 August 2008 (has links)
There is significant need to improve the sensitivity and selectivity for detecting chemical and biological agents. This need exists in a myriad of human endeavors, from the monitoring of production of consumer products to the detection of infectious agents and cancers. Although many well established methodologies for chemical and biological sensing exist, such as mass spectrometry, gas or liquid phase chromatography, enzymelinked immunosorbent (ELISA) assays, etc., it is the goal of the work described herein to outline aspects of two specific platforms which can add two very important features, low cost and portability. The platforms discussed in this dissertation are organic semiconductor field-effect transistors (OFETS), in various architectural forms and chemical modifications, and ion channels immobilized in tethered lipid bilayers integrated with solid state devices. They take advantage of several factors to make these added features possible, low cost manufacturing techniques for producing silicon and organic circuits, low physical size requirements for the sensing elements, the capability to run such circuits on low power, and the ability of these systems to directly transduce a sensing event into an electrical signal, thus making it easier to process, interpret and record a signal. In the most basic OFET functionality, many types of organic semiconductors can be used to produce transistors, each with a slightly different range of sensitivities. When used in concert, they can produce a reversible chemical "fingerprint". These OFETS can also be integrated with silicon transistors - in a hybrid device architecture - to enhance their sensitivity while maintaining their reversibility. The organic semiconductors themselves can be chemically altered with the use of small molecule receptors designed for specific chemicals or chemical functional groups to greatly enhance the interaction of these molecules with the transistor. This increases both sensitivity and selectivity for discrete devices. Specially designed nanoscale OFET configurations with individually addressable gates can enhance the sensitivity of OFETS as well. Finally, ion channels can be selected for immobilization in tethered lipid bilayer sensors which are already inherently sensitive to the analyte of choice or can be genetically modified to include receptors for many kinds of chemical or biological agents. / text
|
22 |
New platforms for electronic devices n-channel organic field-effect transistors, complementary circuits, and nanowire transistors /Yoo, Byungwook, January 1900 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2007. / Vita. Includes bibliographical references.
|
23 |
Approaches and evaluation of architectures for chemical and biological sensing based on organic thin-film field-effect transistors and immobilized ion channels integrated with silicon solid-state devicesFine, Daniel Hayes, January 1900 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2007. / Vita. Includes bibliographical references.
|
24 |
Spin and charge transport through carbon based systemsJung, Suyong, January 1900 (has links)
Thesis (Ph. D.)--University of Texas at Austin, 2007. / Vita. Includes bibliographical references.
|
25 |
Synthesis and characterization of novel thienoacene-based semiconductors for transistors and dye-sensitized solar cell applicationsZhang, Kai 27 January 2016 (has links)
Organic field-effect transistors (OFET) have attracted considerable interests as a promising technology for the next-generation flexible electronics. Thioacenes have recently emerged as potential semiconducting materials for OFETs. On the other hand, Photovoltaic (PV) technology is regarded as a prospective alternative for green and renewable energy source. Recently, dye sensitized solar cells (DSSCs) have drawn intensive attention and showed great potential for practical application. Herein, the research in this thesis would include the synthesis and characterization of novel thioacene-based semiconductors for OFET and DSSC applications. To begin with, a general review on the current status of organic semiconductors for OFET and DSSC applications was presented in Chapter 1. In chapter 2, a series of novel benzodithieno[3,2-b]thiophene derivatives (BDTT-n) with different lateral alkyloxy groups were designed and synthesized. In addition, alkyloxy-substituted benzo[2,1-b:3,4-b’]bis-[1]benzothiophenes derivatives (BBBT-n) were also synthesized. The performances of OFETs based on BDTT-n and BBBT-n have been fully investigated. Among them, BDTT-4 based OFET exhibited the highest hole mobility of 1.74 cm 2 /(Vs) with a current on/off ratio above 10 7 without annealing. In chapter 3, a novel series of naphthodithiophene-based oligomers with D-A- D-A- D structure motif were designed and synthesized. All these oligomers have 2 been fully characterized by NMR and mass spectrometry. The hole mobility properties of these oligomers were determined in OFETs as fabricated by drop- coating technique. These oligomers exhibited typical p-type semiconducting behavior. A mobility of 1.6x10 -2 cm 2 /(Vs) was demonstrated by ENBT based OFET with a current on/off ratio in the range of 10 5-7 after annealing at 160ºC. Besides, in chapter 4, a novel [pi]-bridge, namely naphthodithienothiophene was developed and employed to explore photosensitizers for DSSC application. In this work, four novel photosensitizers with D-A-[pi]-A or D-[pi]-A structure motif were designed and synthesized in which the carbazole or triphenylamine derivative was used as a donating group and benzothiadiazole was applied as auxiliary accepting group. The performances of DSSCs based on these photosensitizers have been fully investigated. Among them, CB-NDTT- CA based device exhibited the highest power conversion efficiency (PCE) of 7.29%. Meanwhile, the interfacial properties of these photosensitizers anchored on TiO 2 have also been studied by ab-initio simulation and Gaussian calculations. In chapter 5, another novel series of photosensitizers with benzodithienothiophene as the [pi]-bridge would be presented, in which different donors, auxiliary acceptors, and structures were incorporated into the frameworks of D-[pi]-A motif to investigate the relationship between the structure and properties. The performances of DSSCs based on these photosensitizers have been fully investigated, and BD-5 based device exhibited the best power conversion efficiency (PCE) of 4.66%. Furthermore, it was demonstrated that molecular engineering was an efficient way to modulate the performance of the DSSCs in 3 which benzothiadiazole was used as an effective auxiliary accepting group in constructing photosensitizers with D-A-[pi]-A structure motif. The di-anchoring approach was also found to be a promising method to design photosensitizers with improved performance.
|
26 |
Solution Processing of Small Molecule Organic Semiconductors: From In situ Investigation to the Scalable Manufacturing of Field Effect TransistorsNiazi, Muhammad Rizwan 05 1900 (has links)
Solution-processed organic field effect transistors (OFETs) have emerged in recent years as promising contenders to be part of electronic and optoelectronic circuits owing to their compatibility with low-cost high throughput roll-to-roll manufacturing technology. The stringent performance requirements for OFETs in terms of carrier mobility, switching speed, turn-on voltage and uniformity over large areas require the performance of single crystal-based OFETs, but these suffer from major scale-up challenges.
To achieve device performance approaching that of single crystals with scalable, high throughput and industry-compatible solution coating of OFETs requires understanding and ultimately controlling the crystallization of organic semiconductors (OSCs), and producing very low defect-density thin films. In this thesis, we develop an understanding of the process-structure-property-performance relationship in OSCs that bring fresh insights into the nature of solution crystallization and lead to novel ways to control OSC crystallization, and finally help achieve fabrication of high-performance OFETs by scalable, high throughput and industry-compatible blade coating method. We probe the solution crystallization of OSCs by employing a suite of ex & in situ characterization techniques. This leads us to an important finding that OSC molecules aggregate to form a dense amorphous intermediate state and nucleation happens from this intermediate state during blade coating under a wide window of coating conditions.
This phenomenon resembles the so-called two-step nucleation model. Two-step nucleation mediates the crystallization of a wide range of natural and synthetic products ranging from soft materials, such as proteins, biominerals, colloids and pharmaceutical molecules, to inorganic compounds. We go on to show that this nucleation mechanism is generally applicable to achieve formation of high-quality polycrystalline films in a variety of small molecule OSCs and their polymer blends. This phenomenon results in highly textured and well-connected domains, which exhibit reduced interfacial and bulk trap-state densities, helping raise the carrier mobility by one to two orders of magnitude in OFETs in comparison to direct nucleation. We extend the understanding developed for solution crystallization of various acenes and thiophene-based small molecule OSCs to the high-performance benzothieno-benzothiophene (BTBT) based small molecule OSCs. On this end, we develop protocols to fabricate high-quality thin films of BTBT based OSCs by blade coating at industrially compatible coating speeds (>100 mms-1). These films show massive single-domains with very few apparent defects when crystallized via multiple liquid-crystalline phases in two-step nucleation conditions, resulting in an average carrier mobility of ~10 cm2V-1s-1.
To sum up, this thesis develops an understanding of OSC solution crystallization and efficient protocols to control polycrystalline thin film quality for high-performance OFETs. These protocols involve a combination of two-step nucleation pathway, solvent mixtures, polymer blends and device-manufacturing conditions. Our efforts enable to realize high-performance OFETs based on high-quality polycrystalline OSC thin films at industry-compatible conditions.
|
27 |
High temperature conjugated polymer transistorsDung Trong Tran (12441126) 21 April 2022 (has links)
<p> </p>
<p>Organic semiconductors have been considered a promising candidate to replace Silicon-based inorganic semiconductors in our electronics due to their lightweight, high flexibility, and solution processability. Recently, conjugated polymers were shown to be functional at up to 200°C, expanding organic semiconductors application territory into high-temperature electronics, which sorely depends on wide-bandgap semiconductors. To push the operational temperature boundary of polymer transistors even further than 200°C, our understanding of temperature impacts on the materials and charge transport mechanism in such harsh conditions needs to be improved. Here, we study the high temperature effect on polymer transistors from two main directions: via molecular design and via device engineering. First, via sidechain design, we explored the impact of close π-π packing on the thermal stability of semiconducting polymers. We discovered that maintaining close π-π packing can lead to lower chain distortion, thus improving the polymer transistors' operational stability at high temperatures. Then we study the impact from device factor, specifically contact resistance in device behavior at extreme conditions. We found that the contact area is more susceptible to high temperatures than other regions in the channels and is the main reason for the degraded performance. We then propose a facile method to minimize the contact problem, to achieve stable devices at above 200°C. And last, we proposed a simple method to attain quasi-temperature independent charge transport in polymer transistors from room temperature to 140°C by simply applying a prolonged bias gate voltage before heating. This research expands our knowledge on charge transport in conjugated polymers at high temperatures and provides a guide to make conjugated polymer transistors for extreme conditions in the future.</p>
|
28 |
Physically-Based Compact Modelling of Organic Electronic Devices / Modélisation Compacte à Base Physique des Composants Électroniques OrganiquesJung, Sungyeop 21 December 2016 (has links)
En dépit d'une amélioration remarquable de la performance des composants électroniques organiques, il y a encore un manque de compréhension théorique rigoureux sur le fonctionnement du composant. Cette thèse est consacrée à la création de modèles pratiques pour composants électroniques organiques à base physique complet, à savoir un modèle compact à base physique. Un modèle compact à base physique d'un élément de circuit est une équation mathématique qui décrit le fonctionnement du composant, et est généralement évaluée par trois critères: si elle est suffisamment simple pour être incorporé dans des simulateurs de circuits, précise pour rendre le résultat des simulateurs utile les concepteurs de circuits et rigoureux pour capturer des phénomènes physiques se produisant dans le composant. Dans ce contexte, les caractéristiques distinctives de l'injection de porteurs de charge et de transport dans les semi-conducteurs organiques sont incorporés dans les modèles avec un effort particulier pour maintenir la simplicité mathématique. L'effet concomitant sur les caractéristiques courant-tension des diodes et des transistors organiques prototypiques sont étudiés. Les méthodes d'extraction des paramètres cohérents aux modèles sont présentés qui permettent la détermination univoque des paramètres de le composant utilisé pour le fonctionnement du composant de modélisation et l'évaluation des performances de le composant et les propriétés des couches minces et des interfaces organiques. Les approches englobent le developement analytique des équations physiques, la simulation numérique à deux dimensions basé sur la méthode des éléments finis et la validation expérimentale. Les modèles compacts originaux et entièrement analytiques et des méthodes d'extraction de paramètres fournissent une compréhension fondamentale sur la façon dont le désordre énergétique dans une couche mince de semi-conducteur organique, décrit par la densité d’etats Gaussienne, affecte les caractéristiques courant-tension observables des composants.Mots-clés : Electronique organique, physique des composants électroniques, modélisation analytique, diodes, transistors à effet de champ, densité d’etats Gaussienne / In spite of a remarkable improvement in the performance of organic electronic devices, there is still a lack of rigorous theoretical understanding on the device operation. This thesis is dedicated to establishing practical models of organic electronic devices with a full physical basis, namely a physically-based compact model. A physically-based compact model of a circuit element is a mathematical equation that describes the device operation, and is generally assessed by three criteria: whether it is sufficiently simple to be incorporated in circuit simulators, accurate to make the outcome of the simulators useful to circuit designers, and rigorous to capture physical phenomena occuring in the device. In this context, distinctive features of charge carrier injection and transport in organic semiconductors are incorporated in the models with a particular effort to maintain mathematical simplicity. The concomitant effect on the current-voltage characteristics of prototypical organic diodes and transistors are studied. Parameter extraction methods consistent to the models are presented which enable unambiguity determination of device parameters used for modeling device operation and assessing device performance and properties of organic thin-films and interfaces. The approaches encompass analytical developement of physical equations, two-dimensional numerical simulation based on finite-element method and experimental validation. The original and fully analytical compact models and parameter extraction methods provide fundamental understanding on how energetic disorder in an organic semiconductor thin-film, described by the Gaussian density of states, affects the observable current-voltage characteristics of the devices.Keywords : Organic electronics, device physics, analytical modeling, diodes, field-effect transistors, Gaussian density-of-states
|
29 |
Elektrické transportní vlastnosti molekulárních materiálů pro pokročilé aplikace / Electrical transport properties of molecular materials for smart applicationsIvancová, Anna January 2012 (has links)
This master´s thesis deals with possibilities of application of new organic molecular materials for electronic devices. Nowadays it is a very attractive field of research, because of the tendencies in industry to miniaturize, reduce production costs and develop new, eco-friendlier, processes of production. The theoretical part of the thesis provides a short overview of organic materials suitable for smart applications and thin films issues including their characterization. The experimental part is dedicated to means how to prepare thin-film electronic components to silicon wafers for thin films field effect transistors. The obtained results in the last part of thesis are discussed about properties of prepared thin films, in the concrete about the electrical transport properties, in the connection with the condition of preparation.
|
30 |
Fabrication and transport studies of n-type OFETS using aligned array carbon nanotubes electrodesJimenez, Edwards 01 May 2012 (has links)
We present fabrication of n-type organic field effect transistors (OFETs) using densely aligned array carbon nanotube (CNT) electrodes. The CNTs were aligned with a high linear density via dielectrophoresis (DEP) from an aqueous solution. In order to fabricate the CNT electrodes, aligned CNTs were cut by using electron beam lithography (EBL) and precise oxygen plasma etching. The n-type OFETs were fabricated in a bottom-contact configuration by depositing a thin film of C60 molecules between the CNT source and drain electrodes, and compared against a controlled C60 OFET with gold electrodes. The electron transport measurements of the OFETs using CNT electrodes show better transistor characteristics compared to OFETs using gold electrodes due to improved charge injection from densely aligned and open-ended nanotube tips.
|
Page generated in 0.1224 seconds