21 |
Device Strategies Directed to Improving the Efficiency of Solution-Processed Organic Solar CellsLiang, Ru-Ze 18 April 2018 (has links)
In the last decade, organic photovoltaics (OPVs) have been attracting much attention for their low cost, and feasibility of mass production in large-area modules. Reported power conversion efficiencies (PCE) of organic solar cells have reached more than 10%. These promising PCEs can be realized by uncovering important principles: (1) rational molecular design, (2) matching of the material energy level, (3) favorable morphology of donor-acceptor (D/A) network, (4) higher carrier mobilities, and (5) suppression of charge recombination within the bulk heterojunction (BHJ). Though these key properties are frequently stated, the relationships between these principles remain unclear, which motivates us to fill these gaps.
In the beginning, we show that changing the sequence of donor and acceptor units of the benzodithiophene-core (BDT) SM donors critically impacts molecular packing and charge transport in BHJ solar cells. Moreover, we find out that by adding small amount of the external solvent additive, the domain size of the SMFQ1 become relatively smaller, resulting in the FF enhancement of ~70% and thus pushing PCE to >6.5%.
To further improve the device performance, we utilize another technique of device optimization: Solvent Vapor Annealing (SVA). Compared with solvent additive, the SVA creates a solvent-saturated environment for SMs to re-arrange and crystalize, leading to PCE of >8%, with nearly-free bimolecular recombination.
When the systems are shifted from fullerene acceptors to nonfullerene acceptors, using solvent additives in indacenodithiophene-core (IDT) systems significantly reduces the domain size from >500nm to <50nm and also allows the SM donors to orderly packed, rising the PCE from <1% to 4.5%. Furthermore in a similar IDT-based system, it shows unexpectedly high VOC and low energy loss, and high PCE > 6% can be reached by employing the dimethyl disulfide (DMDS) as the SVA solvent to re-organize the morphology from excessive mixing to ordered phase-separated D/A network.
Lastly, taking advantage of the distinct and complementary absorption of fullerene and nonfullerene acceptors, we show that the SM ternary system successfully realizes the high PCE of 11%, good air stability, and scalable property.
|
22 |
Využití nanomateriálů pro organickou elektroniku a fotovoltaiku / Utilization of nanomaterials for organic electronic and photovoltaicsFlimel, Karol January 2011 (has links)
The study of the new materials potentially usable for organic photovoltaic and electronics are getting very important from the point of ecological and financial view. Organic electronic devices are getting more and more popular and it is only up to us to search for the new ones that are able to improve their physical properties. The aim of this thesis is to search for materials like have been mentioned above which have very good semiconducting properties. Solutions of pure materials and its mixtures with different concentrations of fullerene have been investigated by ultra-violet spectroscopy, classical fluorescence and time resolved spectrometry. Mainly, were studied the influence of the central atom and side substituents for the optical and electronical properties of our materials of interest. With adding fullerene was observed quenching phenomena of the fluorescence, because all these new materials show usually high photoluminescence. Based on the given results, the most suitable materials had been chosen to provide trial of making organic solar cell, and therefore investigated by the mean of electric measurements (direct current).
|
23 |
Setup of a laser system for structuring organic solar cells and ablation of the silver electrodeFragoso, Joshua January 2013 (has links)
No description available.
|
24 |
Aspects of Photovoltaic Systems: Study and Simulation of Silicon Phthalocyanine Bulk Heterojunction Solar Cells and Monochromatic Photonic Power ConvertersKaller, Kayden 03 September 2021 (has links)
This thesis discusses two different photovoltaic systems, organic solar cells, and photonic power
converters. The open-source software package Solcore was used to simulate and analyze optoelectronic
properties of both systems.
It is widely accepted that the transition from a fossil-fuel driven economy is necessary in the coming
future. Organic solar cells are an alternative energy generation method with potential for fast energetic
and economic payback periods. Bulk heterojunction organic solar cells are a common design, as they
have particularly low manufacturing costs due to a simple device architecture. In this work, two bulk
heterojunction blends are experimentally assessed using the acceptor molecule silicon phthalocyanine
(bis(tri-n-butyl silyl oxide) silicon phthalocyanine ((3BS)2-SiPc) as a potential low-cost non-fullerene
alternative to the typical acceptor [6,6]-phenyl-C61-butyric acid methyl ester (PC₆₁BM). These acceptors
are compared within blends with the typical donor compound poly(3-hexylthiophene) (P3HT), and also
poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)-benzo [1,2-b:4,5-b’]dithiophene))-alt-(5,5-(1′,3′-di-2-
thienyl-5′,7′-bis(2-ethylhexyl)benzo[1′,2′-c:4′,5′-c’]dithiophene-4,8-dione)] (PBDB-T). Device
performance was assessed under standard conditions, increased angles of incidence, and reduced light
intensities. Devices with the P3HT:(3BS)2-SiPc blend achieved a power conversion efficiency (PCE) of
3.6%, which outperformed P3HT:PC₆₁BM devices with a PCE of 3.0% due to a higher open-circuit voltage
(VOC) of 0.76 V as opposed to 0.53 V. The PBDB-T:(3BS)2-SiPc achieved a high VOC of 1.09 V, but had a
lower PCE of 3.4% in relation to the PBDB-T:PC₆₁BM device with a PCE of 6.4% and a VOC of 0.78 V.
Photonic power converters are devices in optical networks that allow for optical power transmission
rather than the conventional method of electrical power transmission. This provides benefits such as
electrical isolation and resistance to electromagnetic interference, along with the ability to propagate
along the same cable as data. These power converters are used to convert optical power to electrical
power, and operate similarly to a solar cell with a narrow bandwidth. Multijunction designs are often
used for increased operating voltage and efficiency. In such designs employing a vertical architecture,
the bottom-most junction has the largest thickness along with the lowest efficiency due to increased
recombination losses. To improve this lower efficiency, light trapping techniques can be employed to
decrease the junction thickness while retaining the optical thickness. In this work, a current-matched 5-
junction GaAs photonic power converter was simulated with both metallic and distributed Bragg
reflectors at the rear of the device. These reflectors allowed for the thinning of the bottommost
junction, which resulted in an increase in efficiency and overall power output of the power converter.
|
25 |
Design framework to improve the photo and thermal stability of organic solar cellsPaleti, Sri Harish Kumar 21 June 2022 (has links)
The state-of-the-art organic solar cells (OSC) use bulk heterojunction (BHJ) blend architecture in the photo-active layer. The BHJ is formed by finely mixing polymer donor and small molecule acceptor, which was predominantly fullerene derivatives until the last five years. However, the emergence of non-fullerene acceptor (NFA) materials has been the viable alternative to overcome high synthetic costs, limited optical absorption, and poor bandgap tunability of fullerene-based acceptors. These unique properties of NFA has resulted in a rapid improvement of OSC efficiency and opened doors for wide variety of applications including building integrated photovoltaics, green houses and agrivoltaics. Despite these advantages, the shorter device lifetime under light and heat is a major concern for their commercialization. This dissertation is focused on improving poor photo- and thermal stability of high efficiency OSC based on the widely used NFA, ITIC and Y-series derivatives. The light-induced changes in the acceptor molecular structure and the active layer nanostructure results in the photo-induced traps in photo-aged devices. The selective addition of third component to the active layer impedes the changes in the active layer nanostructure and suppress trap formation.
Under constant thermal stress, the growth of acceptor crystals results increases the trap-assisted recombination in thermally aged devices. Similar to photo-stability the selective addition of third or more component/s arrests the crystal growth by minimizing the Gibbs free energy. The results suggest that the fabricated hexanary and ternary OSC display a superior thermal stability than the respective binary devices. In addition, the hexanary devices displayed thickness independent thermal stability, which is essential for the active layer thermal stability printed via high throughput techniques.
|
26 |
Computational Prediction Of Efficiency Parameters In Organic Solar Cells : From Polymer Donors And Non Fullerene Acceptors / Beräkningsförutsägelse av effektivitets parametrar i organiska solceller : Från polymeriska donatorer och icke fullerenska acceptorerKarlsson, Martin January 2022 (has links)
The field of organic solar cells is getting more and more attention as the need forrenewable energy sources rises. When developing new materials for organic solar cellssynthesizing the new materials, is a time consuming and costly process. Therefore acomputational model for predicting how effective a new material, is without the needfor synthesizing. In this thesis an attempt to create a model for predicting open circuitvoltage in organic solar cells. Descriptors was calculated using B3LYP/6-31G hybridfunctionals. By creating a data set of donor and acceptor molecules with known andunknown open circuit voltage, and empirically trying to find a correlation between thedata sets that can be extrapolated and modeled. The results of this thesis did notmeet the goal of creating a model for predicting the open circuit voltage. Where nosignificant correlation was found, due a to small sample size.
|
27 |
Schottky behavior of organic solar cells with different cathode deposition methodsAnishetty, Laxman 20 May 2011 (has links)
No description available.
|
28 |
Interface Engineering and Evaluation of Device Performance in Organic PhotovoltaicsRao, Arun Dhumal January 2015 (has links) (PDF)
In recent years, organic photovoltaics (OPVs) have attracted considerable attention as a potential source of renewable energy over traditional materials due to their light weight, low production cost, mechanically stability and compatibility with flexible substrates in roll to roll processing for high volume production. In the OPVs interface plays an important role in determining the performance of the device. Interface signifies formation of efficient contact with electrode, film, and transport of free charge carrier, which results in better performance in the device. Interface engineering also helps in improving mechanical robustness of the device. Hence, understanding of interface, modification and its evaluation is important in fabrication of efficient device.
In this thesis interface is modified such that the performance of the device can be improved (chapter 3 and chapter 4). In Chapter 5 and chapter 6 interface is modified such that device can be fabricated on uncommon substrate. Fabrication of device on uncommon substrates (fiber reinforced plastic and flexible glass substrate), has unique challenges. In chapter 5 and chapter 6, we look at how interface is modified to overcome the challenges associated and also understand the role of interface in improving the performance of device on such substrates is discussed.
In Chapter 1 we discuss about working of organic solar cells and the challenges associated in device fabrication. Understanding of interface to overcome challenges associated is explained. It also covers brief introduction to the succeeding chapters discussed in the thesis and its recent developments.
To understand the properties of interface and to analyze device performance various characterization techniques have been used are discussed in chapter 2. This chapter also covers the materials and general device fabrication techniques used in this thesis.
In chapter 3, a narrow bandgap (NBG) polymer used as a near IR sensitizer in P3HT: PCBM blend. Since, P3HT with a band gap of ~1.9 eV, the commonly used p-type material absorbs approximately ~25 % of incident light. Hence, MP2 (NBG polymer) is used along with P3HT: PCBM in active layer to form a ternary blend, which helps in increased absorption. Basic properties of MP2 are evaluated using UV-visible spectroscopy, differential scanning calaorimetry(DSC), thermogravimetric analyser (TGA), gel permeation chromatography (GPC) and photoluminescence (PL) techniques. To evaluate enhanced absorption of ternary UV-visible spectroscopy is carried out. Charge transfer from one moiety to other in ternary blend is evaluated using PL and Ttime resolved microwave conductivity (TRMC). Morphology of the ternary is assessed using atomic force microscope (AFM) and structural characterization is carried out by X-ray diffraction (XRD). Performance of the device is evaluated by current-voltage (J-V) characterizations. Further improved performance is supported by external quantum efficiency (EQE). Charge extraction with linear increasing voltage (CELIV) of the device is done to evaluate the recombination mechanism in the device and to assess the performance of the device.
One-dimensional (1D) ZnO nanostructures provide direct paths for charge transport, and also offer large interfacial area to make them an ideal electron transport layer. In chapter 4 highly aligned ZnO nanorods is used as electron transport layer in OPV. Growth of ZnO nanorods is two-step processes, growing seed layer and growing ZnO nanorods from hydrothermal process using an appropriate seed layer. Two different soft-chemical solution-
growth methods (upward and downward) are developed to fabricate self-assembled, oriented ZnO nanorods. Substrate mounting, surface properties and optical transmittance are optimized by varying the nanorods growth conditions. Further the ZnO nanorods are UV ozone treated and its effect on performance of nanostructured buffer layer based device is evaluated.
In Chapter 5 OPV is fabricated on an opaque FRP substrate. Fabrication of OPV device on opaque substrate plastic is unique and hence understanding various properties is vital. Such devices fabrication require bottom up approach, with transparent electrode as the top electrode and metal electrode on the surface of FRP. FRP has inherent rough surface of about few microns RMS roughness. In order to reduce the roughness of the substrate FRP was planarized. The planarized layer is chosen, such that it chemically binds with the substrate. The chemical interaction between substrate and planarizing coating is evaluated by FTIR and Raman spectroscopy. The binding of planarized layer and FRP is evaluated using nanoscratch technique and surface energies are studied using contact angle measurements. In addition, adhesion properties of the metal electrodes, which are deposited on planarized FRP are evaluated using nanoscratch technique.
Fabrication of OPV requires a top transparent electrode. Simple spin coating technique is used to optimize the top electrode. The property of top electrode is evaluated using UV-visible spectroscopy for transmittance, and sheet resistance of the electrode is characterized. OPV device is fabricated on planarized FRP substrate using optimized top transparent electrode and its PV properties is evaluated. Performance of the device is evaluated for two different bottom electrodes and further performance of device is enhanced using buffer layers.
Usually flexible OPVs are fabricated on plastic substrate such as PET, PEN. However they are not structurally stable at high temperatures and have high oxygen and moisture
Permeability. In Chapter 6 Organic based photovoltaic devices were fabricated on flexible glass. Flexible glass has high strength and it is also known for low oxygen and moisture permeability. Fabrication of device on flexible glass has never been done before and hence, generation of data is necessary for commercialization of the technology. Device fabrication is optimized by using two different transparent conducting layers (ITO- sputter deposited, PEDOT: PSS-solution processed) and device performance was evaluated for both. Since the substrate is flexible in nature understanding the performance of the device during flexing is important. For this 2-parallel plate flexural apparatus is fabricated for in-situ measurements along with current voltage measurements. These devices are flexed cyclically and performance of device is evaluated.
Therefore, work discussed in the thesis show by modifying the interface of the device, and understanding various interfaces of the device is crucial for improving the performance of the device. Also by engineering the interface, devices can be fabricated on various types of substrate.
|
29 |
SYNTHESIS AND DEVICE CHARACTERIZATION OF FUNCTIONALIZED PENTACENES AND ANTHRADITHIOPHENESSubramanian, Sankar 01 January 2008 (has links)
Research on pi-conjugated organic materials in the recent past has produced enormous developments in the field of organic electronics and it is mainly due to their applications in electronic devices such as organic field effect transistors (OFETs), organic light emitting diodes (OLEDs) and organic photovoltaic cells (OPVs). The primary goal of this research work is to design and synthesize high performing charge transport organic semiconductors. One of the criteria for better performance of the organic thin film transistor (OTFT) is to have high uniform thin film morphology of the organic semiconductor layer on the substrate. The first project in this dissertation has been directed towards improving the thin film morphology of the functionalized pentacenes through liquid crystalline behaviour. The results have suggested the possibility of thermotropic liquid crystalline phases in 6,13-bis(diisopropylhexylsilylethynyl) pentacene which has no pi-stacking in its solid state and the presence of silyl group at the peri-position is crucial for the stability of the functionalized pentacenes. In the second project, i have investigated the effect of alkyl groups with varying chain length on the anthradithiophene chromophore on the performance of the charge transporting devices. Organic blend cell based on solution processable 2,8-diethyl-5,12-bis(triethylsilylethynyl) anthradithiophene has showed 1% power conversion efficiency and the performance is mainly attributed to the large crystalline phase segregation of the functionalized anthradithiophene from the amorphous soluble fullerene derivative matrix. OTFT study on alkyl substituted functionalized anthradithiophenes suggested the need of delegate balance between thin film morphology and the crystal packing. Third project has been directed towards synthesizing halogen substituted functionalized anthradithiophenes and their influence in the performance of OFETs. OTFT made of 2,8-difluoro-5,12-bis(triethylsilylethynyl) anthradithiophene produced devices with thin film hole mobilities greater than 1 cm2/Vs. The result suggested that the device is not contact limited rather this high performance OTFTs are due to the contact induced crystallinity of the organic semiconductor.
|
30 |
Organic Thin Films Deposited by Emulsion-Based, Resonant Infrared, Matrix-Assisted Pulsed Laser Evaporation: Fundamentals and ApplicationsGe, Wangyao January 2016 (has links)
<p>Thin film deposition techniques are indispensable to the development of modern technologies as thin film based optical coatings, optoelectronic devices, sensors, and biological implants are the building blocks of many complicated technologies, and their performance heavily depends on the applied deposition technique. Particularly, the emergence of novel solution-processed materials, such as soft organic molecules, inorganic compounds and colloidal nanoparticles, facilitates the development of flexible and printed electronics that are inexpensive, light weight, green and smart, and these thin film devices represent future trends for new technologies. One appealing feature of solution-processed materials is that they can be deposited into thin films using solution-processed deposition techniques that are straightforward, inexpensive, high throughput and advantageous to industrialize thin film based devices. However, solution-processed techniques rely on wet deposition, which has limitations in certain applications, such as multi-layered film deposition of similar materials and blended film deposition of dissimilar materials. These limitations cannot be addressed by traditional, vacuum-based deposition techniques because these dry approaches are often too energetic and can degrade soft materials, such as polymers, such that the performance of resulting thin film based devices is compromised.</p><p>The work presented in this dissertation explores a novel thin film deposition technique, namely emulsion-based, resonant infrared, matrix-assisted pulsed laser evaporation (RIR-MAPLE), which combines characteristics of wet and dry deposition techniques for solution-processed materials. Previous studies have demonstrated the feasibility of emulsion-based RIR-MAPLE to deposit uniform and continuous organic, nanoparticle and blended films, as well as hetero-structures that otherwise are difficult to achieve. However, fundamental understanding of the growth mechanisms that govern emulsion-based RIR-MAPLE is still missing, which increases the difficulty of using rational design to improve the performance of initial RIR-MAPLE devices that have been demonstrated. As a result, it is important to study the fundamentals of emulsion-based RIR-MAPLE in order to provide insight into the long-term prospects for this thin film deposition technique.</p><p>This dissertation explores the fundamental deposition mechanisms of emulsion-based RIR-MAPLE by considering the effects of the emulsion target composition (namely, the primary solvent, secondary solvent, and surfactant) on the properties of deposited polymer films. The study of primary solvent effects on hydrophobic polymer deposition helps identify the unique method of film formation for emulsion-based RIR-MAPLE, which can be described as cluster-by-cluster deposition of emulsified particles that yields two levels of ordering (i.e., within the clusters and among the clusters). The generality of this film formation mechanism is tested by applying the lessons learned to hydrophilic polymer deposition. Based on these studies, the deposition design rules to achieve smooth polymer films, which are important for different device applications, are identified according to the properties of the polymer.</p><p>After discussion of the fundamental deposition mechanisms, three applications of emulsion-based RIR-MAPLE, namely thin film deposition of organic solar cells, polymer/nanoparticle hybrid solar cells, and antimicrobial/fouling-release multifunctional films, are studied. The work on organic solar cells identifies the ideal deposition mode for blended films with nanoscale domain sizes, as well as demonstrates the relationships among emulsion target composition, film properties, and corresponding device performance. The studies of polymer/nanoparticle hybrid solar cells demonstrate precise control of colloidal nanoparticle deposition, in which the integrity of nanoparticles is maintained and a distinct film morphology is achieved when co-deposited with polymers. Finally, the application of antimicrobial and fouling-release multifunctional films demonstrates the importance of blended film deposition with nanoscale phase separation, a key feature to achieving reusable bio-films that can kill bacteria when illuminated with ultraviolet light.</p><p>Thus, this dissertation provides great insight to the fundamentals of emulsion-based RIR-MAPLE, serves as a valuable reference for future development, and paves the pathway for wider adoption of this unique thin film deposition technique, especially for organic solar cells.</p> / Dissertation
|
Page generated in 0.0652 seconds