• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 130
  • 30
  • 12
  • 11
  • 10
  • 7
  • 6
  • 6
  • 4
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 233
  • 233
  • 160
  • 77
  • 67
  • 65
  • 64
  • 54
  • 36
  • 36
  • 36
  • 36
  • 32
  • 31
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Theoretical studies of the structure-property relationships of hole- and electron-transport materials for organic photovoltaic applications

Pandey, Laxman 18 September 2013 (has links)
Donor-acceptor and thiophene based π-conjugated molecules and polymers, along with fullerene derivatives, are extensively used active components in the photoactive layer of organic photovoltaic devices. In this dissertation, we make use of several computational methodologies to investigate structure-property relationships of these organic systems in their molecular forms. We begin with an overview of the field of organic photovoltaics and some of the important problems in organic solar cells that are currently being investigated. This is then followed by a brief review of the electronic-structure methods (e.g. Hartree-Fock theory, Density Functional Theory, and Time-dependent Density Functional Theory) that are employed. We then present the main results of the dissertation. Chapter 3 provides a broad overview on how changes to the donor-acceptor copolymer chemical structure impacts its intrinsic geometric, electronic, and optical properties. Chapter 4 focuses on the characterization of the lowest excited-states and optical absorption spectra in donor-acceptor copolymers. In Chapter 5, we investigate the effects of alkyl side-chain placements in the π-conjugated backbone of oligothiophenes and how that impacts their intramolecular properties as well as the oligomer:fullerene interfacial interactions. Chapter 6 presents our investigation on the role of oligomer:fullerene configuration and reorganization energy on exciton-dissociation and charge-recombination processes. Finally, a synopsis of the work and further considerations are presented in Chapter 7.
52

電子ドナーおよびアクセプター性共役高分子からなる高分子ブレンド薄膜太陽電池の開発 / Development of Polymer Blend Solar Cells Composed of Conjugated Donor and Acceptor Polymers

森, 大輔 23 March 2015 (has links)
Kyoto University (京都大学) / 0048 / 新制・課程博士 / 博士(工学) / 甲第19007号 / 工博第4049号 / 新制||工||1623 / 31958 / 京都大学大学院工学研究科高分子化学専攻 / (主査)教授 伊藤 紳三郎, 教授 赤木 和夫, 教授 辻井 敬亘 / 学位規則第4条第1項該当
53

Organic solar cells based on liquid crystalline and polycrystalline thin films

Yoo, Seunghyup January 2005 (has links)
This dissertation describes the study of organic thin-film solar cells in pursuit of affordable, renewable, and environmentally-friendly energy sources. Particular emphasis is given to the molecular ordering found in liquid crystalline or polycrystalline films as a way to leverage the efficiencies of these types of cells. Maximum efficiencies estimated based on excitonic character of organic solar cells show power conversion efficiencies larger than 10% are possible in principle. However, their performance is often limited due to small exciton diffusion lengths and poor transport properties which may be attributed to the amorphous nature of most organic semiconductors.Discotic liquid crystal (DLC) copper phthalocyanine was investigated as an easily processible building block for solar cells in which ordered molecular arrangements are enabled by a self-organization in its mesophases. An increase in photocurrent and a reduction in series resistance have been observed in a cell which underwent an annealing process. X-ray diffraction (XRD) and atomic force microscopy (AFM) measurements suggest that structural and morphological changes induced after the annealing process are related to these improvements.In an alternative approach, p-type pentacene thin films prepared by physical vapor deposition were incorporated into heterojunction solar cells with C60 as n-type layers. Power conversion efficiencies of 2.7 % under broadband illumination (350-900 nm) with a peak external quantum efficiency of 58 % have been achieved with the broad spectral coverage across the visible spectrum. Analysis using an exciton diffusion model shows this efficient carrier generation is mainly due to the large exciton diffusion length of pentacene films. Joint XRD and AFM studies reveal that the highly crystalline nature of pentacene films can account for the observed large exciton diffusion length. In addition, the electrical characteristics are studied as a function of light intensity using the equivalent circuit model used for inorganic pn-junction solar cells. Dependences of equivalent-circuit parameters on light intensity are further investigated using a modified equivalent circuit model, and their effects on the overall photovoltaic performance are discussed.
54

NOVEL SOLUTION PROCESSABLE ACCEPTORS FOR ORGANIC PHOTOVOLTAIC APPLICATIONS

Shu, Ying 01 January 2011 (has links)
The field of organic electronics has become an increasingly important field of research in recent years. Organic based semiconductors have the potential for creating inexpensive, solution processed devices on flexible substrates. Some of the applications of organic semiconductors include organic field effect transistors, organic light emitting diodes and organic photovoltaics. Functionalized pentacenes have been proven to be viable donor materials for use in organic photovoltaic devices. The goal of this research is to synthesize and test the viability of novel electron deficient pentacenes and pentacene based materials as acceptors to be used as drop-in replacements for PCBM in bulk-heterojunction organic solar cells. Our goal was to tune and improve the efficiencies of these solar cells in a two pronged approach. First we tuned the open circuit voltage of these devices by determining the optimal energy levels of these acceptors by varying the number of electron withdrawing substituents on the acene core. We also tuned the short circuit current by chemically altering the solid state packing and optimizing device processing conditions. A preliminary structure-property relationship of these small molecule acceptors and photovoltaic device efficiency was established as a result.
55

NEW PHOTOVOLTAIC ACCEPTORS: SYNTHESIS AND CHARACTERIZATION OF FUNCTIONALIZED C-FUSED ANTHRADITHIOPHENE QUINONES

Shelton, Kerri 01 January 2011 (has links)
Stable organic semiconductors are critical to produce inexpensive, efficient and flexible thin film organic solar cells. A current chemical focus is the synthesis of stable, electron-accepting materials to be utilized as an acceptor layer in photovoltaics.1 The Anthony group has shown that the functionalization of pentacene with suitable electron withdrawing groups provides a catalog of suitable acceptors for this purpose.2 These pentacenes can be further modified to pack in a unique 1-dimensional "sandwich herringbone" crystal packing, leading to improved device current.3 To improve the stability of acene acceptors, we have taken two hetero-atom themed approaches. First, we have studied the acenequinone as an electron-accepting chromophore.4 Further, we replaced the terminal aromatic rings with heterocycles, such as furan or thiophene. In order to enhance the crystal engineering versatility of the chromophore, we utilize c-fused heterocycles (rather than the more commonly used b-fused cycles seen in e.g. anthradithiophenes). The c-fused acenequinones can be tetra-functionalized with silylethynyl groups to influence crystal packing and increase solubility.5 The silylethyne groups are known to increase the photostability and lower the energy gap (Eg) of pentacenes.5 The functionalization of the silylethyne groups also aids in lowering the lowest unoccupied orbital (LUMO) of acene structures.5
56

Study of charge-collecting interlayers for single-junction and tandem organic solar cells

Shim, Jae Won 22 May 2014 (has links)
A hole-collecting interlayer layer for organic solar cells, NiO, processed by atomic layer deposition (ALD) was studied. ALD-NiO film offered a novel alternative to efficient hole-collecting interlayers in conventional single-junction organic solar cells. Next, surface modifications with aliphatic amine group containing polymers for use as electron-collecting interlayers were studied. Physisorption of the polymers was found to lead to large reduction of the work function of conducting materials. This approach provides an efficient way to provide air-stable low-work function electrodes for organic solar cells. Highly efficient inverted organic solar cells were demonstrated by using the polymer surface modified electrodes. Lastly, charge recombination layers of the inverted tandem organic solar cells were studied. Efficient charge recombination layers were realized by using the ALD and the polymer surface modification. The charge recombination layer processed by ALD provided enhanced electrical and barrier properties. Furthermore, the polymer surface modification on the charge recombination layers showed large work function contrast, leading to improved inverted tandem organic solar cells. The inverted tandem organic solar cells with the new charge recombination layer showed fill factor over 70% and power conversion efficiency over 8%.
57

Engineering Infra-red Photon Absorbing Materials for Organic Solar Cells

D'Souza, Jason 15 January 2010 (has links)
This thesis aims to investigate different infrared absorbing molecules and how their properties are affected by their incorporation into polymer nanoparticles. Metal-free phthalocyanine-H2Pc, uranyl super phthalocyanine-USPc, and europium bisphthalocyanine were studied-EuPc2; the latter two capable of IR absorption. Due to the discovery of USPc’s moisture sensitivity, only H2Pc and EuPc2 were derivatized to facilitate encapsulation in polystyrene nanoparticles through a miniemulsion polymerization. These novel phthalocyanines attained loadings of up to 41wt% and exhibit substantial broadening of absorption peaks. Furthermore, the EuPc2 loaded particles also reveal an unprecedented gain in extinction coefficient of the NIR and radical absorption peaks. The leaching behavior of the dye was also studied, as this had not been undertaken in the literature, and revealed the need for a method of polymerizing/chemically binding phthalocyanines into nanoparticles; with preliminary steps taken to realize this goal.
58

Using a Financial Model to Determine Technical Objectives for Organic Solar Cells

Powell, Colin 27 July 2010 (has links)
Organic solar cells (OSCs) are of interest because the technology offers a significant opportunity to reduce the overall costs of solar energy. OSCs can be very inexpensive to produce given that they rely on non-commodity materials and can use existing manufacturing techniques that are not labour- and capital-intensive. In this research, a financial model, named TEEOS (Technological and Economic Evaluator for Organic Solar), is developed and is used to determine financial indicators, such as simple payback period. These indicators are used to determine technical objectives for the OSCs. Two sample cells are evaluated in Toronto, Canada using historical data. The results show that the cell with a higher efficiency and wider absorptive wavelength range produces a payback period of approximately nine years, while the other cell has a payback period well over 45 years. Stochastic modeling techniques are also used to better replicate electricity price and weather fluctuations.
59

Engineering Infra-red Photon Absorbing Materials for Organic Solar Cells

D'Souza, Jason 15 January 2010 (has links)
This thesis aims to investigate different infrared absorbing molecules and how their properties are affected by their incorporation into polymer nanoparticles. Metal-free phthalocyanine-H2Pc, uranyl super phthalocyanine-USPc, and europium bisphthalocyanine were studied-EuPc2; the latter two capable of IR absorption. Due to the discovery of USPc’s moisture sensitivity, only H2Pc and EuPc2 were derivatized to facilitate encapsulation in polystyrene nanoparticles through a miniemulsion polymerization. These novel phthalocyanines attained loadings of up to 41wt% and exhibit substantial broadening of absorption peaks. Furthermore, the EuPc2 loaded particles also reveal an unprecedented gain in extinction coefficient of the NIR and radical absorption peaks. The leaching behavior of the dye was also studied, as this had not been undertaken in the literature, and revealed the need for a method of polymerizing/chemically binding phthalocyanines into nanoparticles; with preliminary steps taken to realize this goal.
60

Using a Financial Model to Determine Technical Objectives for Organic Solar Cells

Powell, Colin 27 July 2010 (has links)
Organic solar cells (OSCs) are of interest because the technology offers a significant opportunity to reduce the overall costs of solar energy. OSCs can be very inexpensive to produce given that they rely on non-commodity materials and can use existing manufacturing techniques that are not labour- and capital-intensive. In this research, a financial model, named TEEOS (Technological and Economic Evaluator for Organic Solar), is developed and is used to determine financial indicators, such as simple payback period. These indicators are used to determine technical objectives for the OSCs. Two sample cells are evaluated in Toronto, Canada using historical data. The results show that the cell with a higher efficiency and wider absorptive wavelength range produces a payback period of approximately nine years, while the other cell has a payback period well over 45 years. Stochastic modeling techniques are also used to better replicate electricity price and weather fluctuations.

Page generated in 0.051 seconds