Spelling suggestions: "subject:"organicinorganic interface"" "subject:"inorganic:organic interface""
1 |
Electronic properties of metal-organic and organic-organic interfaces studied by photoemission and photoabsorption spectroscopy / Elektronische Eigenschaften von Metall/Organischen und Organik/Organischen Grenzflächen, untersucht mit Hilfe von Photoemissionsspektroskopie und NahkantenröntgenfeinstrukturmessungenMolodtsova, Olga 14 December 2007 (has links) (PDF)
In this work systematic studies of the organic semiconductor CuPc have been presented. In general the investigation can be devided in three parts. In the first one we have studied the electronic structure of clean CuPc thin film. The next two parts are devoted to organic-organic and metal–organic interface formation, where one of the interface components is CuPc thin film. The main results of this thesis are: - The electronic structure of the pristine organic semiconductor CuPc (valence band and empty states) has been obtained by a combination of conventional and resonant photoemission, near-edge X-ray absorption, as well as by theoretical ab initio quantum-chemical calculations. A qualitative assignment of different VB structures has been given, or in other words the contributions of different atomic species as well as sites of the CuPc molecule to the electronic DOS has been established. In particular, it was shown, that the HOMO is mainly comprised of the spectral weights from the orbitals of carbon pyrolle atoms. Additional contributions to the HOMO stems from the benzene atoms. A combined experimental and theoretical study of the unoccupied electronic density of states of CuPc was presented. Our study allows identifying the contributions from different parts of the molecule to the unoccupied DOS and the measured spectra, which lays grounds for future studies of the evolution of the CuPc electronic states upon e.g. functionalization or doping. Application of similar studies to other organic semiconductors will also provide significant insight into their unoccupied electronic states. - The electronic properties of the organic heterointerfaces between fullerite and pristine copper phthalocyanine were studied. Both interfaces, CuPc/C60 and C60/CuPc, were found to be non-reactive with pronounced shifts of the vacuum level pointing to the formation of an interfacial dipole mainly at the CuPc side of the heterojunctions. The dipole values are close to the difference of the work functions of the two materials. Important interface parameters and hole-injection barriers were obtained. The sequence of deposition does not influence the electronic properties of the interfaces. - CuPc doped with potassium was studied by means of photoemission and photoabsorption spectroscopy. A detailed analysis of the core-level PE spectra allows one to propose possible lattice sites, which harbor the potassium ions. Contrasting to a few results reported in the literature, the films prepared in this thesis showed no finite electronic density of states at the Fermi level. - Two stages of the In/CuPc interface formation have been distinguished. The low-coverage stage is characterized by a strong diffusion of the In atoms into the organic film. Metal ions occupy sites close to the pyrolle nitrogen and strongly interact with molecules transferring negative charge to CuPc. Indium diffusion into the organic films saturates at a stoichiometry of In2CuPc. Subsequently, in the second stage the formation of a metallic indium film occurs on the top of the In2CuPc film. - Upon deposition on CuPc film Sn and Ag atoms do not diffuse into the organic film forming metallic clusters and/or thin metallic overlayer. Sharp metal-organic film interface is formed, in contrast to indium and potassium deposition. Presented experimental results also give evidence for absence of noticeable chemical reaction of Sn and Ag with CuPc thin film. - The systematic investigation of interface formation between CuPc thin film and various metals gives us the possibility to summarize all results with demonstrating similarities and differences for all systems studied.
|
2 |
Electronic properties of metal-organic and organic-organic interfaces studied by photoemission and photoabsorption spectroscopyMolodtsova, Olga 18 July 2007 (has links)
In this work systematic studies of the organic semiconductor CuPc have been presented. In general the investigation can be devided in three parts. In the first one we have studied the electronic structure of clean CuPc thin film. The next two parts are devoted to organic-organic and metal–organic interface formation, where one of the interface components is CuPc thin film. The main results of this thesis are: - The electronic structure of the pristine organic semiconductor CuPc (valence band and empty states) has been obtained by a combination of conventional and resonant photoemission, near-edge X-ray absorption, as well as by theoretical ab initio quantum-chemical calculations. A qualitative assignment of different VB structures has been given, or in other words the contributions of different atomic species as well as sites of the CuPc molecule to the electronic DOS has been established. In particular, it was shown, that the HOMO is mainly comprised of the spectral weights from the orbitals of carbon pyrolle atoms. Additional contributions to the HOMO stems from the benzene atoms. A combined experimental and theoretical study of the unoccupied electronic density of states of CuPc was presented. Our study allows identifying the contributions from different parts of the molecule to the unoccupied DOS and the measured spectra, which lays grounds for future studies of the evolution of the CuPc electronic states upon e.g. functionalization or doping. Application of similar studies to other organic semiconductors will also provide significant insight into their unoccupied electronic states. - The electronic properties of the organic heterointerfaces between fullerite and pristine copper phthalocyanine were studied. Both interfaces, CuPc/C60 and C60/CuPc, were found to be non-reactive with pronounced shifts of the vacuum level pointing to the formation of an interfacial dipole mainly at the CuPc side of the heterojunctions. The dipole values are close to the difference of the work functions of the two materials. Important interface parameters and hole-injection barriers were obtained. The sequence of deposition does not influence the electronic properties of the interfaces. - CuPc doped with potassium was studied by means of photoemission and photoabsorption spectroscopy. A detailed analysis of the core-level PE spectra allows one to propose possible lattice sites, which harbor the potassium ions. Contrasting to a few results reported in the literature, the films prepared in this thesis showed no finite electronic density of states at the Fermi level. - Two stages of the In/CuPc interface formation have been distinguished. The low-coverage stage is characterized by a strong diffusion of the In atoms into the organic film. Metal ions occupy sites close to the pyrolle nitrogen and strongly interact with molecules transferring negative charge to CuPc. Indium diffusion into the organic films saturates at a stoichiometry of In2CuPc. Subsequently, in the second stage the formation of a metallic indium film occurs on the top of the In2CuPc film. - Upon deposition on CuPc film Sn and Ag atoms do not diffuse into the organic film forming metallic clusters and/or thin metallic overlayer. Sharp metal-organic film interface is formed, in contrast to indium and potassium deposition. Presented experimental results also give evidence for absence of noticeable chemical reaction of Sn and Ag with CuPc thin film. - The systematic investigation of interface formation between CuPc thin film and various metals gives us the possibility to summarize all results with demonstrating similarities and differences for all systems studied.
|
Page generated in 0.0935 seconds