• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 340
  • 49
  • 2
  • Tagged with
  • 391
  • 349
  • 318
  • 315
  • 67
  • 42
  • 34
  • 28
  • 27
  • 26
  • 25
  • 23
  • 22
  • 19
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
271

Organic and organometallic compounds for nonlinear absorption of light

Lind, Per January 2007 (has links)
The demand for protection of eyes and various types of optical sensors from laser-beam pulses has resulted in the search for optical limiting devices that have the property of being transparent at low intensity of light (normal light), but non-transparent towards high intensity (laser) light. This type of protection may be obtained by using an organic material that displays nonlinear optical (NLO) properties. Examples of NLO effects that can be used for optical limiting are reverse saturable absorption (RSA), two-photon absorption (TPA) and nonlinear refraction. The advantage of using compounds that show such NLO effects is that they can have very fast response and are self-activating, that is, there is no need for externally controlled switching to obtain optical limiting. In this work, several dialkynyl substituted thiophenes and some thiophenyl-alkynyl-platinum(II)-complexes were synthesized and tested for nonlinear absorption of light. A palladium-copper mediated coupling (Sonogashira coupling) was utilized for all reactions between terminal alkynes and aryl halides. Molecular orbital calculations were used in order to screen for suitable properties, such as the second hyperpolarizability, in compounds of interest. A quantitative structure-activity relationship (QSPR) study using a PLS approach were performed in order to identify important molecular electronic variables for optical limiting of organic compounds.
272

Multivariate processing and modelling of hyphenated metabolite data

Jonsson, Pär January 2005 (has links)
One trend in the ‘omics’ sciences is the generation of increasing amounts of data, describing complex biological samples. To cope with this and facilitate progress towards reliable diagnostic tools, it is crucial to develop methods for extracting representative and predictive information. In global metabolite analysis (metabolomics and metabonomics) NMR, GC/MS and LC/MS are the main platforms for data generation. Multivariate projection methods (e.g. PCA, PLS and O-PLS) have been recognized as efficient tools for data analysis within subjects such as biology and chemistry due to their ability to provide interpretable models based on many, correlated variables. In global metabolite analysis, these methods have been successfully applied in areas such as toxicology, disease diagnosis and plant functional genomics. This thesis describes the development of processing methods for the unbiased extraction of representative and predictive information from metabolic GC/MS and LC/MS data characterizing biofluids, e.g. plant extracts, urine and blood plasma. In order to allow the multivariate projections to detect and highlight differences between samples, one requirement of the processing methods is that they must extract a common set of descriptors from all samples and still retain the metabolically relevant information in the data. In Papers I and II this was done by applying a hierarchical multivariate compression approach to both GC/MS and LC/MS data. In the study described in Paper III a hierarchical multivariate curve resolution strategy (H-MCR) was developed for simultaneously resolving multiple GC/MS samples into pure profiles. In Paper IV the H-MCR method was applied to a drug toxicity study in rats, where the method’s potential for biomarker detection and identification was exemplified. Finally, the H-MCR method was extended, as described in Paper V, allowing independent samples to be processed and predicted using a model based on an existing set of representative samples. The fact that these processing methods proved to be valid for predicting the properties of new independent samples indicates that it is now possible for global metabolite analysis to be extended beyond isolated studies. In addition, the results facilitate high through-put analysis, because predicting the nature of samples is rapid compared to the actual processing. In summary this research highlights the possibilities for using global metabolite analysis in diagnosis.
273

Chemical Vapour Deposition of Undoped and Oxygen Doped Copper (I) Nitride

Fallberg, Anna January 2010 (has links)
In science and technology there is a steadily increased demand of new materials and new materials production processes since they create new application areas as well as improved production technology and economy. This thesis includes development and studies of a chemical vapour deposition (CVD) process for growth of thin films of the metastable material copper nitride, Cu3N, which is a semiconductor and decomposes at around 300 oC. The combination of these properties opens for a variety of applications ranging from solar cells to sensor and information technology. The CVD process developed is based on a metal-organic compound copper hexafluoroacetylacetonate, Cu(hfac)2 , ammonia and water and was working at about 300 oC and  5 Torr. It was found that a small amount of water in the vapour increased the growth rate considerably and that the phase content, film texture, chemical composition and morphology were strongly dependent on the deposition conditions. In-situ oxygen doping during the CVD of Cu3N to an amount of 9 atomic % could also be accomplished by increasing the water concentration in the vapour. Oxygen doping increases the band gap of the material as well as the electrical resistivity and changes the stability. The crystal structure of Cu3N is very open and contains several sites which can be used for doping. Different spectroscopic techniques like X-ray photoelectron spectroscopy, Raman spectroscopy and near edge X-ray absorption fine structure spectroscopy were used to identify the oxygen doping site(s) in Cu3N. Besides the properties, the oxygen doping also affected the morphology and texture of the films. By combining thin layers of different materials several properties can be optimized at the same time. It has been demonstrated in this thesis that multilayers, composed of alternating Cu3N and Cu2O layers, i.e. a metastable and a stable material, could be grown by CVD technique. However, the stacking sequence affected the texture, morphology and chemical composition. The interfaces between the different layers were sharp and no signs of decomposition of the initially deposited metastable Cu3N layer could be detected.
274

Organic Heavy Group 14 Element Compounds : A Study of Their Chemical Bonding Properties Directed Towards Applications as Molecular Wires and in Synthesis

Tibbelin, Julius January 2010 (has links)
The research described herein includes synthesis, spectroscopy, and quantum chemical calculations with focus on the characteristic properties of compounds with bonds between carbon and the heavier Group 14 elements. The chapters based on the first four papers concern σ- and σ/π-conjugated compounds, although the focus of the first paper is on ring strain of bicyclo[1.1.1]pentanes with C, Si, Ge or Sn at the bridgeheads. The relationship between calculated homodesmotic ring strain energies and through-space distances between the bridgehead atoms was evaluated, and it was found that replacing one of the methylene bridges with phospha-methyl gave both low strain and short through-space distance. Two kinds of σ/π-interacting systems were analysed with the difference that the σ- and π-bonded segments were either allowed to rotate freely relative each other or frozen into a conformer with maximal σ/π-interaction. The freely rotating systems are star-shaped oligothiophenes linked by heavy alkane segments. Density functional theory (DFT) calculations of hole reorganization energies support the measured hole mobilites. In summary, longer central oligosilane linkages, when compared to shorter, facilitate intermolecular hole-transfer between oligothiophene units. In 1,4-disilacyclohexa-2,5-dienes, the strength of the π- and pseudo-π interaction depends on the substituents at Si. Vapour phase UV absorption spectroscopy of 2,3,5,6-tetraethyl-1,1,4,4-tetrakis(trimethylsilyl)-1,4-disilacyclohexa-2,5-diene reveals a strong absorption at 273 nm (4.50 eV). Time-dependent DFT calculations further indicate that octastannylated 1,4-disilacyclohexa-2,5-diene has is lowest excited state at 384 nm (3.23 eV). The electronic, geometric and optical properties of substituted 1,4-disilacyclohexa-2,5-dienes were compared with those of the correspondingly substituted siloles. It was found that the lowest excitations of siloles are less tunable than those of 1,4-disilacyclohexa-2,5-dienes. The final section concerns strongly reverse-polarised 2-amino-2-siloxysilenes formed thermally from carbamylpolysilanes, and their lack of reaction with alcohols. Instead, the carbamylsilane reacts with alcohols giving silyl ethers, leading to a new benign route for alcohol protection.
275

Efficient Synthesis and Analysis of Chiral Cyanohydrins

Lundgren, Stina January 2007 (has links)
This thesis deals with the development of new methods for efficient synthesis and analysis in asymmetric catalysis. It focuses on the preparation of chiral cyanohydrins by enantioselective addition of cyanide to prochiral aldehydes. The initial part of the thesis describes the development of a dual Lewis acid– Lewis base activation system for efficient synthesis of chiral O-acylated and Ocarbonylated cyanohydrins. This system was used for the preparation of a variety of cyanohydrins in high isolated yields and with up to 96% ee. Activation of the cyanide by nucleophilic attack of the Lewis base at the carbonyl carbon atom was supported experimentally. Secondly, convenient procedures for the synthesis of polymer-bound chiral YbCl3-pybox and Ti-salen complexes are described. The polymeric complexes were employed in cyanation of benzaldehyde. A T-shaped microreactor was used for screening of reaction conditions for the enantioselective cyanation of benzaldehyde using trimethylsilyl cyanide and acetyl cyanide as cyanide sources. A microreactor charged with the polymeric Tisalen complex was used for enantioselective cyanation of benzaldehyde. Finally, an enzymatic method for high throughput analysis of ee and conversion of products from chiral Lewis acid–Lewis base-catalysed additions of α- ketonitriles to prochiral aldehydes was developed. The method could be used for the analysis of a variety of O-acylated cyanohydrins. Microreactor technology was successfully combined with high throughput analysis for efficient catalyst optimisation. / QC 20100809
276

Synthesis of Carbohydrate Mimics and Development of a Carbohydrate Epimerisation Method

Ramstadius, Clinton January 2010 (has links)
In this thesis the synthesis of several hydrolytically stable carbohydrate mimics with the potential to function as glycosidase or lectin inhibitors are described. This work is presented in Chapters 2-5. Chapters 2 and 3 describe synthetic efforts for producing carbasugars, and include the first synthesis of 1,2-bis-epi-valienamine and the preparation of two previously known aminocarbasugars. All three compounds were synthesised starting from D-mannose, using ring-closing metathesis as the key step. 1,2-Bis-epi-valienamine was found to inhibit Cellulomonas fimi β-mannosidase with a Ki value of 140 mM. Also included is the development of a novel synthetic route from cheap D-fructose to three mannose-mimicking carbasugars using a ring-closing metathesis strategy. Two of the compounds are potential inhibitors of the FimH adhesin. In Chapters 4 and 5 the synthesis of a number of pseudodisaccharides are presented; valienamine- and epi-valienamine-containing pseudodisaccharides and a small library of S-linked pseudodisaccharides were prepared. Various synthetic strategies were explored, including an alkylation strategy, Mitsunobu couplings, and sulfonate displacements. This is the first report on the synthesis of a valienamine pseudodisaccharide with β-lyxo-configuration. Two of the S-linked pseudodisaccharides were found to bind to Concanavalin A with high affinity. The final chapter (Chapter 6) of this thesis focuses on the development of a carbohydrate epimerisation method using transition metal catalysis. Two equilibrium constants involving gluco/manno- and gluco/allo-alcohols were determined via this method. / At the time od doctoral defense, the following papers were unpublished and had a status as follows: Paper 2: Submitted. Paper 3: Manuscript. Paper 5: Manuscript.
277

Heavy-Core Staffanes : A Computational Study of Their Fundamental Properties of Interest for Molecular Electronics

Sandström, Niclas January 2007 (has links)
The basic building blocks in molecular electronics often correspond to conjugated molecules. A compound class consisting of rigid rod-like staffane molecules with the heavier Group 14 elements Si, Ge, Sn and Pb at their bridgehead positions has now been investigated. Herein these oligomers are called heavy-core or Si-, Ge-, Sn- or Pb-core staffanes. These compounds benefit from interaction through their bicyclo[1.1.1]pentane monomer units. Quantum chemical calculations were performed to probe their geometries, stabilities and electronic properties associated with conjugation. The stabilities of the bicyclo[n.n.n]alkane and [n.n.n]propellanes (1 ≤ n ≤ 3) with C, Si, Ge and Sn at the bridgehead positions were studied by calculation of homodesmotic ring strain energies. The bicyclic compounds with n = 1 and Si, Ge or Sn at bridgehead positions have lower strain than the all-carbon compound. A gradually higher polarizability exaltation is found as the bridgehead element is changed from C to Si, Ge, Sn or Pb. The ratio between longitudinal and average polarizability also increases gradually as Group 14 is descended, consistent with enhanced conjugation in the heavier oligomers. The localization of polarons in C-, Si- and Sn-core staffane radical cations was calculated along with internal reorganization energies. The polaron is less localized in Si- and Sn-core than in C-core staffane radical cation. The reorganization energies are also lower for the heavier staffanes, facilitating hole mobility when compared to the C-core staffanes. The effect of the bicyclic structure on the low valence excitations in the UV-spectra of compounds with two connected disilyl segments was also investigated. MS-CASPT2 calculations of 1,4-disilyl- and 1,4-bis(trimethylsilyl)-1,4-disilabicyclo[2.2.1]heptanes and 1,4-disilyl- and 1,4-bis(trimethylsilyl)-1,4-disilabicyclo[2.1.1]hexanes revealed that although the bicyclic cage separates the two disilyl chromophores, there is a strong red-shift of the lowest valence excitations when compared to an isolated disilane.
278

Exploring Molecular Interactions : Synthesis and Studies of Clip-Shaped Molecular Hosts

Polavarapu, Anjaneya Prasad January 2007 (has links)
Molecular recognition via noncovalent interactions plays a key role in many biological processes such as antigen-antibody interactions, protein folding, the bonding and catalytic transformation of substrates by enzymes, etc. Amongst these noncovalent interactions, electrostatic interactions, hydrogen bonding, π-π interactions, and metal-to-ligand bonding are the most prominent. Exploring noncovalent interactions in host-guest systems that range from small hydrocarbon systems to more complex systems is the main motivation of this thesis. The present study involves the design, synthesis and characterization of clip-shaped molecules as host structures, and an examination of their binding properties with a variety of guests using NMR spectroscopy. Several clips with a hydrocarbon or glycoluril backbone were synthesized. The binding of cations to small, hydrocarbon-based clips suggests that binding is enhanced by the rigidity and cooperativity between the two sidewalls of the clip. Binding is also very much dependant on the solvent properties. Glycoluril-based clips built with aromatic sidewalls provide a deep cavity for binding guest molecules. The binding properties of these hosts were studied with several guests such as cations, Lewis acids and Lewis bases. Lewis basic binding sites in the acenaphthene-terminated clip were dominating in guest binding. Complexation-induced conformational changes in the wall-to-wall distance were observed for this clip. In contrast, for a porphyrin-terminated clip with metal centers, very strong binding to a series of Lewis basic guests of various sizes into the clip cavity was observed. Conformational locking of guests with long alkyl chains was achieved, suggesting that, this clip could be useful as a potential molecular tool for the structural characterization of acyclic molecules with several stereogenic centers. This porphyrin clip was also shown to bind substituted fullerenes in the cavity.
279

Synthesis of 11C-labelled Alkyl Iodides : Using Non-thermal Plasma and Palladium-mediated Carbonylation Methods

Eriksson, Jonas January 2006 (has links)
Compounds labelled with 11C (β+, t1/2 = 20.4 min) are used in positron emission tomography (PET), which is a quantitative non-invasive molecular imaging technique. It utilizes computerized reconstruction methods to produce time-resolved images of the radioactivity distribution in living subjects. The feasibility of preparing [11C]methyl iodide from [11C]methane and iodine via a single pass through a non-thermal plasma reactor was explored. [11C]Methyl iodide with a specific radioactivity of 412 ± 32 GBq/µmol was obtained in 13 ± 3% decay-corrected radiochemical yield within 6 min via catalytic hydrogenation of [11C]carbon dioxide (24 GBq) and subsequent iodination, induced by electron impact. Labelled ethyl-, propyl- and butyl iodide was synthesized, within 15 min, via palladium-mediated carbonylation using [11C]carbon monoxide. The carbonylation products, labelled carboxylic acids, esters and aldehydes, were reduced to their corresponding alcohols and converted to alkyl iodides. [1-11C]Ethyl iodide was obtained via palladium-mediated carbonylation of methyl iodide with a decay-corrected radiochemical yield of 55 ± 5%. [1-11C]Propyl iodide and [1-11C]butyl iodide were synthesized via the hydroformylation of ethene and propene with decay-corrected radiochemical yields of 58 ± 4% and 34 ± 2%, respectively. [1-11C]Ethyl iodide was obtained with a specific radioactivity of 84 GBq/mmol from 10 GBq of [11C]carbon monoxide. [1-11C]Propyl iodide was synthesized with a specific radioactivity of 270 GBq/mmol from 12 GBq and [1-11C]butyl iodide with 146 GBq/mmol from 8 GBq. Palladium-mediated hydroxycarbonylation of acetylene was used in the synthesis of [1-11C]acrylic acid. The labelled carboxylic acid was converted to its acid chloride and subsequently treated with amine to yield N-[carbonyl-11C]benzylacrylamide. In an alternative method, [carbonyl-11C]acrylamides were synthesized in decay-corrected radiochemical yields up to 81% via palladium-mediated carbonylative cross-coupling of vinyl halides and amines. Starting from 10 ± 0.5 GBq of [11C]carbon monoxide, N-[carbonyl-11C]benzylacrylamide was obtained in 4 min with a specific radioactivity of 330 ± 4 GBq/µmol.
280

Reversible Sulfur Reactions in Pre-Equilibrated and Catalytic Self-Screening Dynamic Combinatorial Chemistry Protocols

Larsson, Rikard January 2006 (has links)
<p>Dynamic Combinatorial Chemistry (DCC) is a recently introduced supramolecular approach to generate dynamically interchanging libraries of compounds. These libraries are made of different building blocks that reversibly interact with one another and spontaneously assemble to encompass all possible combinations. If a target molecule, for instance a receptor is added to the system and one or more molecules show affinity to the target species, these compounds will, according to Le Châtelier´s principle, be amplified on the expense of the other non-bonding constituents. To date, only a handful of different systems and formats have been used. Hence, to further advance the technique, especially when biological systems are targeted, new reaction types and new screening methods are necessary. This thesis describes the development of reversible sulfur reactions, thiol/disulfide interchange and transthiolesterification (the latter being a new reaction type for DCC), as means of generating reversible covalent bond reactions. Two different types of target proteins are used, enzymes belonging to the hydrolase family and the plant lectin Concanavalin A. Furthermore, two new screening/analysis methods not previously used in DCC are also presented; the quartz crystal microbalance (QCM)-technique and catalytic self-screening.</p>

Page generated in 0.0569 seconds