• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 44
  • 6
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 151
  • 44
  • 39
  • 28
  • 25
  • 10
  • 10
  • 10
  • 9
  • 8
  • 8
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Pseudo electron-deficient organometallics: limited reactivity towards electron-donating ligands

Pitto-Barry, Anaïs, Lupan, A., Zegke, Markus, Swift, Thomas, Attia, A.A.A., Lord, Rianne M., Barry, Nicolas P.E. 19 September 2017 (has links)
Yes / Half-sandwich metal complexes are of considerable interest in medicine, material, and nanomaterial chemistry. The design of libraries of such complexes with particular reactivity and properties is therefore a major quest. Here, we report the unique and peculiar reactivity of eight apparently 16-electron half-sandwich metal (ruthenium, osmium, rhodium, and iridium) complexes based on benzene-1,2-dithiolato and 3,6-dichlorobenzene-1,2-dithiolato chelating ligands. These electron-deficient complexes do not react with electron-donor pyridine derivatives, even with the strong σ-donor 4-dimethylaminopyridine (DMAP) ligand. The Ru, Rh, and Ir complexes accept electrons from the triphenylphosphine ligand (σ-donor, π-acceptor), whilst the Os complexes were found to be the first examples of non-electron-acceptor electron-deficient metal complexes. We rationalized these unique properties by a combination of experimental techniques and DFT/TDFT calculations. The synthetic versatility offered by this family of complexes, the low reactivity at the metal center, and the facile functionalization of the non-innocent benzene ligands is expected to allow the synthesis of libraries of pseudo electron-deficient half-sandwich complexes with unusual properties for a large range of applications.
112

Synthetic Routes to 3-Fold Symmetric Tridentate Oxygen Donor Ligands

Clevenger, Margo 08 August 1997 (has links)
The class of ligands represented by [CpCo(P(O)(OR)2)3]-, L- , were first synthesized by W. Kläui in 1977. These ligands have been found to coordinate to a variety of low and high oxidation state metals through the use of its three P=O oxygen atoms as donors. The ligands act as mono-anionic six electron donors which make them similar to the more widely known cyclopentadienyl ligands, (C5H5-xRx)-, but have electronic properties like those of fluoride or oxide. Also, it has been found that the coordination chemistry of L- resembles the unsubstituted tris(pryrazolyl)hydroborato six electron ligand, (RB(pz)3)-. All three of these ligands can be modified by changing the substituent R. The Kläui ligand offers a good opportunity to synthesize a chiral derivative. In the process to obtain the chiral version, (cyclopentadienyl)tris(biphenyl-phosphito-P)cobaltate(1-), 18, was synthesized from 2,2'-biphenol. This was characterized through NMR, mass spectroscopy, and XPS. Next, a racemic version, (cyclopentadienyl)tris(biphenylphosphito-P)cobaltate(1-), 17, was synthesized from (±)1,1′-bi-2-naphthol. A one-pot synthesis for the rac-binaphthyl phosphite derivative was developed with an increased yield from the previously published synthesis. The racemic version of the ligand was characterized by NMR and mass spectroscopy. The chiral version has not yet been synthesized, however, by following the developed procedure for the non-chiral version, the ligand could be synthesized from optically active 1,1'-bi-2-naphthol. / Master of Science
113

Crystal Structure of a Rigid Ferrocence-based Macrocycle from High-Resolution X-ray Powder Diffraction.

Dinnebier, R.E., Ding, L., Ma, K., Neumann, M.A., Tanpipat, N., Leusen, Frank J.J., Stephens, P.W., Wagner, M. January 2001 (has links)
No / A macrocycle, 6, has been synthesized in high yield from 2,5-di(pyrazol-1-yl)hydroquinone and 1,1`-fc[B(Me)NMe2]2 {fc = Fe(C5H4)2}. The molecule incorporates two redox-active 1,1`-ferrocenylene units in its backbone and contains four chiral boron centers, each of them possessing the same configuration. It is demonstrated that crystal structures of organometallics of moderate complexity can be solved from high-resolution X-ray powder diffraction patterns, once the connectivity between the functional groups is known.
114

Synthesis and characterization of redox-noninnocent pyrazine(diimine) iron complexes and an inverted pyridine(diimine) ligand

Billups, Jaylan 08 August 2023 (has links) (PDF)
Cooperativity between the metal center and the ligand has been shown in nature to be an important feature of systems that catalyze two-electron processes that first-row transition metals usually cannot catalyze on their own. In these cases, the ligand acts as a site of reactivity that in many instances can store electrons or react directly with substrates in solution. The design and study of systems where there is synergy between the metal and the ligand have been leveraged to catalyze polymerization and hydrogenation-type reactions as well as the activation of small molecules such as dihydrogen. Specifically, the pyridine(diimine) ligand scaffold has been reported to store up to three electrons on the ligand backbone that can later be used in catalysis. Wanting to expand on this work, we have designed and synthesized a new pincer that has redox-noninnocent properties similar to pyridine(diimine) ligands but incorporates a pyrazine ring instead of a pyridine ring to give rise to new electronic properties. Pyrazine(diimines) also have an uncoordinated 4-position nitrogen that can be further functionalized to fine-tune the electronic properties of the ligand. In Chapter II we will discuss bisligated iron(II) pyrazine(diimine) (PZDI) complexes in three different oxidation states where we used spectroscopic and computational techniques as well as comparison to known pyridine(diimine) iron(II) complexes to support our assignments of ligand-based reduction. Chapter III will focus on monoligated pyrazine(diimine) iron(II) complexes as compared to analogous pyrazine(diimine) systems where the central metal is manganese, cobalt, or nickel, as well as compare our pyrazine(diimine) iron(II) complexes to reported pyridine(diimine) iron(II) analogs. We have also synthesized a new inverted pyridine(diimine) ligand scaffold that has an NCN binding pocket, which will be discussed in Chapter IV. In the design of the inverted pyridine(diimine) ligand we have left in place the 4-position nitrogen from our previously described pyrazine(diimine) ligand, maintaining a Lewis basic site for functionalization. Overall, we hope to describe the results we observed with both monoligated and bisligated iron(II) pyrazine(diimine) complexes as well as discuss our approach to the design of and progress towards a new inverted pyridine(diimine) ligand scaffold.
115

Density functional theory and model-based studies of charge transfer and molecular self-organization on surfaces:

Santana-Bonilla, Alejandro 29 March 2017 (has links) (PDF)
Molecular-based quantum cellular automata (m-QCA), as an extension of quantum-dot QCAs, offer a novel alternative in which binary information can be encoded in the molecular charge configuration of a cell and propagated via nearest-neighbor Coulombic cell-cell interactions. Appropriate functionality of m-QCAs involves a complex relationship between quantum mechanical effects, such as electron transfer processes within the molecular building blocks, and electrostatic interactions between cells. In the first part of this document, the influence of structural distortions in single m-QCA is addressed within a minimal model using an diabatic-to-adiabatic transformation. Thus, it is shown that even small changes of the classical square geometry between driver and target cells, such as those induced by distance variations or shape distortions, can make cells respond to interactions in a far less symmetric fashion, modifying and potentially impairing the expected computational behavior of the m-QCA. The model has been further extended to consider time-dependent external electric fields in which a special emphasis is given to the profiles in which this external parameter can interact with the associated molecular complex. The results of the model have been validated by a direct comparison with first-principle calculations allowing to conclude the plausibility to induce the intra-molecular charge transfer process in a controllable manner via the interaction with the external electric field. The influence played by the electric field profile in the response of the molecular complex is also investigated. The results suggests a major role played by this variable in terms of the time length in which the intra-molecular charge transfer can be observed. In the second part, first-principle theoretical calculations of the self-assembly properties and electronic structure of Ferrocene-functionalized complexes have been carried out. Hence, five different molecular complexes which offer a potential playground to realistic implement the m-QCA paradigm have been investigated. The main emphasis is given to study the interaction between localized charge-carrier molecular states and the delocalized surface states. The results of these calculations demonstrate the possibility to obtain real systems in which intra-molecular charge localization can be combined with self-assembly scaffolding and absorbed on either Highly oriented pyrolytic graphite (HOPG) or metallic-surfaces. Finally, the validation of these findings is carried out via comparison with accesible experimental results and opening the gate to plausible strategies where the paradigm can be implemented.
116

Reductive Functionalization of 3D Metal-Methyl Complexes and Characterization of a Novel Dinitrogen Dicopper (I) Complex

Fallah, Hengameh 05 1900 (has links)
Reductive functionalization of methyl ligands by 3d metal catalysts and two possible side reactions has been studied. Selective oxidation of methane, which is the primary component of natural gas, to methanol (a more easily transportable liquid) using organometallic catalysis, has become more important due to the abundance of domestic natural gas. In this regard, reductive functionalization (RF) of methyl ligands in [M(diimine)2(CH3)(Cl)] (M: VII (d3) through CuII (d9)) complexes, has been studied computationally using density functional techniques. A SN2 mechanism for the nucleophilic attack of hydroxide on the metal-methyl bond, resulting in the formation of methanol, was studied. Similar highly exergonic pathways with very low energy SN2 barriers were observed for the proposed RF mechanism for all complexes studied. To modulate RF pathways closer to thermoneutral for catalytic purposes, a future challenge, paradoxically, requires finding a way to strengthen the metal-methyl bond. Furthermore, DFT calculations suggest that for 3d metals, ligand properties will be of greater importance than metal identity in isolating suitable catalysts for alkane hydroxylation in which reductive functionalization is used to form the C—O bond. Two possible competitive reactions for RF of metal-methyl complexes were studied to understand the factors that lower the selectivity of C—O bond forming reactions. One of them was deprotonation of the methyl group, which leads to formation of a methylene complex and water. The other side reaction was metal-methyl bond dissociation, which was assessed by calculating the bond dissociation free energies of M3d—CH3 bonds. Deprotonation was found to be competitive kinetically for most of the 1st row transition metal-methyl complexes (except for CrII, MnII and CuII), but less favorable thermodynamically as compared to reductive functionalization for all of the studied 1st row transition metal complexes. Metal-carbon bond dissociation was found to be less favorable than the RF reactions for most 3d transition metal complexes studied. The first dinitrogen dicopper (I) complex has been characterized using computational and experimental methods. Low temperature reaction of the tris(pyrazolyl)borate copper(II) hydroxide {iPr2TpCu}2(µ-OH)2 with triphenylsilane under a dinitrogen atmosphere gives the µ -N2 complex, {iPr2TpCu}2(µ -N2). X-ray crystallography reveals an only slightly activated N2 ligand (N-N: 1.111(6) Å) that bridges between two iPr2TpCuI fragments. While DFT studies of mono- and dinuclear copper dinitrogen complexes suggest a weak µ-backbonding between the d10 CuI centers and the N2 ligand, they reveal a degree of cooperativity in the dinuclear Cu-N2-Cu interaction.
117

Synthesis and reactivity of low coordinate nickel(I) complexes bearing ring expanded N-heterocyclic carbene ligands

Poulten, Rebecca January 2015 (has links)
This thesis describes the development of nickel(I) complexes incorporating ring expanded N-heterocyclic carbene (RE NHC) ligands and examines their electronic characterisation, activation of O2, reactivity and catalytic applications. A series of three coordinate, paramagnetic Ni(I) complexes of the form Ni(RE NHC)(PPh3)Br (1 – 10) were prepared by comproportionation of Ni(COD)2 and Ni(PPh3)2Br2 in the presence of RE NHCs. The RE NHCs employed varied in the degree of ring expansion (6-, 7- and 8-membered), extent of N-substituent steric bulk (Mes, oTol, oAnis) and the donor/acceptor properties of the carbene (diamino vs. diamido). EPR and DFT electronic characterisation of 1 – 10 confirmed that the unpaired electron was located on the nickel ion in a mixed orbital of predominantly 3dz2 character. Yellow solutions of 1 or 6 (RE NHC = 6Mes and 7Mes respectively) immediately became purple in the presence of O2 due to O2 activation and incorporation of the oxygen atoms as bridging ligands resulting from C-H activation/oxygenation of an RE NHC N-substituent. This generated the dimeric Ni(II) complexes Ni(6/7Mes)Br(µ-OH)(µ-O-6/7Mes)’NiBr (6Mes = 13; 7Mes = 14). Mass spectrometry demonstrated that the doubly activated complexes [NiBr(µ-O-6/7Mes)’]2 (15 and 16 respectively) were also formed in the reactions. UV-vis spectroscopy revealed the reactions took place rapidly, even at 190 K. Contrasting reactivity was observed when 2 or 7, bearing the less sterically encumbered N-oTol substituents 6oTol and 7oTol respectively, were exposed to O2, which led to the ligand redistribution products NiII(6/7oTol)(PPh3)Br2 (17 and 18 respectively). The less electron rich diamido analogue containing 6MesDAC (5), underwent dissociation and oxidation of the RE NHC and PPh3 ligands. Attempts to abstract the bromide from 1 generated novel two and three coordinate Ni(I) products. Reaction with additional 6Mes produced the two coordinate cation [Ni(6Mes)2]+ (19), which could be reduced with KC8 to Ni(6Mes)2 (20). SQUID analysis of 19 revealed it to be the first example of a nickel containing mononuclear single molecular magnet (SMM). Addition of [Et3Si]+ to 1 followed by work up in toluene led to the isolation of the Ni(I)-(η2-toluene) complex [Ni(6Mes)(η2-C6H5CH3)]+ (21). Mesitylene generated the analogous [Ni(6Mes)(η2-C6H3(CH3)3)]+ (23), but neither 1,4-xylene nor naphthalene gave isolable products. In all cases, cocrystallisation of [6MesH]+…arene was observed in variable amounts, which compromised reaction studies of the Ni-arene complexes. Removal of bromide from 1 with TlPF6 in THF generated the solvent coordinated cationic species [Ni(6Mes)(PPh3)(THF)]+ (24). Attempts to remove the ligated THF molecule were unsuccessful, however, it could be directly substituted by CO to form [Ni(6Mes)(PPh3)(CO)]+ (26). Similarly to 1, complex 24 activated O2, generating a dimer analogous to the singly activated complex 13 (Ni(6Mes)(PPh3)(µ-OH)(µ-O-6Mes)’NiBr (25)). Reactivity of 1 with NaBH4 produced [Ni(6Mes)(κ2-BH4)]2 (28), a Ni(I) dimer bridged by two BH4 ligands. The catalytic efficiency of neutral 1 in Kumada cross-coupling of aryl halides and PhMgCl or MesMgBr was probed. Of note was the high activity towards both aryl chlorides and aryl fluorides. Comparisons with cationic 24, larger 7- (7) and 8-membered ring (8 and 9) variants and the Ni(II) complexes Ni(6Mes/6oTol/7oTol)(PPh3)Br2 (29, 17 and 18 respectively) revealed that 1 exhibited the highest reactivity of all the precursors.
118

Monitoring complex reactions using tandem mass spectrometric methods

Ting, Michelle Yan Chi 01 May 2019 (has links)
Suzuki-Miyaura cross-coupling is a well-known method for making biaryls. With bifunctional monomers, Suzuki polycondensation (SPC) can be used to make polyaryls. Given the complexity of the reacting solution, studying the mechanism of SPC is extremely tough. To solve this problem, we used tandem mass spectrometric (MS/MS) methods to observe the dynamic behaviour of catalytically relevant species in real time. Catalysis involves a complex soup of reactants, intermediates and products. We used an ESI-MS with a triple quadrupole mass analyzer to monitor the SPC in positive ion mode using pressurized sample infusion (PSI) in real time. Full scan, selected ion recording (SIR), product ion scan, neutral loss scan (NLS) and multiple reaction monitoring (MRM) MS/MS methods were applied. Tetrakistriphenylphosphine palladium(0) was the catalyst of this reaction and a positively charged phosphonium aryl iodide tag (m/z 478) was implemented into the first catalytic cycle, enabling us to track all the intermediate oligomers up to the 4th addition. Product ion scan revealed all the intermediate oligomers lose a triphenylphosphine fragment (m/z 262) which would either come from the complex or the charged tag. Three significant intermediate types were observed in each stage of the catalysis, oxidative addition, transmetallation and reductive elimination and their behavior was studied in a chronogram, normalized to the total ion current. As expected, the use of selected ion recording, and neutral loss scan dramatically improved the signal-to-noise ratio. Ultimately, multiple reaction monitoring showed the best chronogram data due to the fact that this scan acts as a “double filter” in a soup of reactive species and contaminants. Real time reaction monitoring has proven to provide detailed insights regarding a reaction. MS/MS methods are promising for improving data quality, selectivity and sensitivity in reaction monitoring. The principle is broadly applicable to other systems, from an intricate catalytic reaction with short-lived ionic intermediates to a reaction with only a single product generated. Reaction dynamics for an exceptionally complex reaction can be made simple and easy by utilizing tandem mass spectrometry methods in time resolved reaction monitoring. / Graduate
119

Evaluation of κ4-Diimine Nickel and Cobalt Hydrofunctionalization Catalysts

January 2018 (has links)
abstract: The search for highly active, inexpensive, and earth abundant replacements for existing transition metal catalysts is ongoing. Our group has utilized several redox non-innocent ligands that feature flexible arms with donor substituents. These ligands allow for coordinative flexibility about the metal centre, while the redox non-innocent core helps to overcome the one electron chemistry that is prevalent in first row transition metals. This dissertation focuses on the use of Ph2PPrDI, which can adopt a κ4-configuration when bound to a metal. One reaction that is industrially useful is hydrosilylation, which allows for the preparation of silicones that are useful in the lubrication, adhesive, and cosmetics industries. Typically, this reaction relies on highly active, platinum-based catalysts. However, the high cost of this metal has inspired the search for base metal replacements. In Chapter One, an overview of existing alkene and carbonyl hydrosilylation catalysts is presented. Chapter Two focuses on exploring the reactivity of (Ph2PPrDI)Ni towards carbonyl hydrosilylation, as well as the development of the 2nd generation catalysts, (iPr2PPrDI)Ni and (tBu2PPrDI)Ni. Chapter Three presents a new C-O bond hydrosilylation reaction for the formation of silyl esters. It was found the (Ph2PPrDI)Ni is the most active catalyst in the literature for this transformation, with turnover frequencies of up to 900 h-1. Chapter Four explores the activity and selectivity of (Ph2PPrDI)Ni for alkene hydrosilylation, including the first large scope of gem-olefins for a nickel-based catalyst. Chapter Five explores the chemistry of (Ph2PPrDI)CoH, first through electronic structure determinations and crystallography, followed by an investigation of its reactivity towards alkyne hydroboration and nitrile dihydroboration. (Ph2PPrDI)CoH is the first reported cobalt nitrile dihydroboration catalyst. / Dissertation/Thesis / Doctoral Dissertation Chemistry 2018
120

New Directions in Catalyst Design and Interrogation: Applications in Dinitrogen Activation and Olefin Metathesis

Blacquiere, Johanna M. 09 May 2011 (has links)
A major driving force for development of new catalyst systems is the need for more efficient synthesis of chemical compounds essential to modern life. Catalysts having superior performance offer significant environmental and economic advantages, but their discovery is not trivial. Well-defined, homogeneous catalysts can offer unparalleled understanding of ligand effects, which proves invaluable in directing redesign strategies. This thesis work focuses on the design of ruthenium complexes for applications in dinitrogen activation and olefin metathesis. The complexes developed create new directions in small-molecule activation and asymmetric catalysis by late-metal complexes. Also examined are the dual challenges, ubiquitous in catalysis, of adequate interrogation of catalyst structure and performance. Insight into both is essential to enable correlation of ligand properties with catalyst activity and/or selectivity. Improved methods for accelerated assessment of catalyst performance are described, which expand high-throughput catalyst screening to encompass parallel acquisition of kinetic data. A final aspect focuses on direct examination of metal complexes, both as isolated species, and under catalytic conditions. Applications of charge-transfer MALDI mass spectrometry to structural elucidation in organometallic chemistry is described, and the technique is employed to gain insight into catalyst decomposition pathways under operating conditions.

Page generated in 0.0659 seconds