• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Thermodynamic processes involved in wave energy extraction

Medina-López, Encarnación January 2018 (has links)
Wave energy is one of the most promising renewable energy sources for future exploitation. This thesis focuses on thermodynamic effects within Oscillating Water Column (OWC) devices equipped withWells turbines, particularly humidity effects. Previous theoretical studies of the operation of OWCs have resulted in expressions for the oscillation of the water surface in the chamber of an OWC based on linear wave theory, and the air expansion{compression cycle inside the air chamber based on ideal gas theory. Although in practice high humidity levels occur in OWC devices open to the sea, the influence of atmospheric conditions such as temperature and moisture on the performance of Wells turbines has not yet been studied in the field of ocean energy. Researchers have reported substantial differences between predicted and measured power output, and performance rates of OWCs presently coming into operation. The effect of moisture in the air chamber of the OWC causes variations on the atmospheric conditions near the turbine, modifying its performance and efficiency. Discrepancies in available power to the turbine are believed to be due to the humid air conditions, which had not been modelled previously. This thesis presents a study of the influence of humid air on the performance of an idealised Wells turbine in the chamber of an OWC using a real gas model. A new formulation is presented, including a modified adiabatic index, and subsequent modified thermodynamic state variables such as enthalpy, entropy and specific heat. The formulation is validated against experimental data, and found to exhibit better agreement than the ideal approach. The analysis indicates that the real gas behaviour can be explained by a non{dimensional number which depends on the local pressure and temperature in the OWC chamber. A first approach to the OWC formulation through the calculation of real air flow in the OWC is given, which predicts a 6% decrease in efficiency with respect to the ideal case when it is tested with a hypothetical pulse of pressure. This is important because accurate prediction of efficiency is essential for the optimal design and management of OWC converters. A numerical model has also been developed using computational fluid dynamics (CFD) to simulate the OWC characteristics in open sea. The performance of an OWC turbine is studied through the implementation of an actuator disk model in Fluent®. A set of different regular wave tests is developed in a 2D numerical wave flume. The model is tested using information obtained from experimental tests on a Wells{type turbine located in a wind tunnel. Linear response is achieved in terms of pressure drop and air flow in all cases, proving effectively the applicability of the actuator disk model to OWC devices. The numerical model is applied first to an OWC chamber containing dry air, and then to an OWC chamber containing humid air. Results from both cases are compared, and it is found that the results are sensitive to the degree of humidity of the air. Power decreases when humidity increases. Finally, results from the analytical real gas and numerical ideal gas models are compared. Very satisfactory agreement is obtained between the analytical and the numerical models when humidity is inserted in the gaseous phase. Both analytical and numerical models with humid air show considerable differences with the numerical model when dry air is considered. However, at the resonance frequency, results are independent of the gas model used. At every other frequency analysed, the real gas model predicts reduced values of power that can fall to 50% of the ideal power value when coupled to the radiation-diffraction model for regular waves. It is recommended that real gas should be considered in future analyses of Wells turbines in order to calculate accurately the efficiency and expected power of OWC devices.
2

Aplicação do método Design Construtal na avaliação numérica da potência hidropneumática de um dispositivo coluna de água oscilante com região de transição trapezoidal ou semicircular e estudo da influência da turbina no formato elíptico

Lima, Yuri Theodoro Barbosa de January 2016 (has links)
A conversão da energia das ondas dos oceanos em energia elétrica é uma alternativa para o problema da falta de combustíveis fósseis. Uma das possibilidades de aproveitamento é através de dispositivos cujo princípio de funcionamento é o de Coluna de Água Oscilante (CAO). No presente trabalho o objetivo é, através da modelagem computacional e do emprego do Design Construtal, maximizar a potência hidropneumática de um dispositivo conversor de energia das ondas do mar do tipo CAO. São analisados diferentes eixos da restrição física, no formato elíptico, que representa a turbina, e duas formas geométricas na região de transição entre a câmara hidropneumática e a chaminé do dispositivo CAO: trapezoidal e semicircular. Considerando um domínio bidimensional, as restrições para estes problemas são: Área da restrição elíptica (AR), Área total do dispositivo (AT) e razão entre a área da restrição elíptica e a área total (ϕn). Os graus de liberdade analisados são: a razão entre os comprimentos dos eixos da restrição elíptica (d1/d2) para o caso da restrição física da turbina, o ângulo de inclinação da parede (α) para o caso com região de transição trapezoidal, o raio (r) e H2/l (razão entre altura e comprimento da chaminé de saída da câmara CAO) para o caso com região de transição semicircular. Para a solução numérica é empregado um código de dinâmica dos fluidos computacional, FLUENT®, baseado no Método de Volumes Finitos (MVF). O modelo multifásico Volume of Fluid (VOF) é aplicado no tratamento da interação água-ar. O domínio computacional é representado por um tanque de ondas com um dispositivo CAO acoplado. Os resultados obtidos indicam que, para o estudo da região de transição trapezoidal o desempenho do conversor tem aproximadamente o mesmo desempenho para todas as geometrias estudadas. A região de transição semicircular, apresenta resultados para os quais foi possível otimizar a potência hidropneumática. O estudo da turbina indica que foi possível determinar uma geometria capaz de converter a energia da onda incidente ao dispositivo, sem que ocorresse a obstrução do escoamento de ar na chaminé do dispositivo CAO. Assim, mostra-se a relação entre o método Design Construtal e o clima de ondas na definição das dimensões que maximizam a potência hidropneumática. / The conversion of ocean’s wave energy into electrical energy is an alternative for the scarcity of fossil fuels. One of the possibilities of energy use is through devices, whose operating principle is the Oscillating Water Column (OWC). In this work the aim is, through computer modeling and the Constructal Design, to maximize hydropneumatic power of a power converter device type OWC. Different axes of physical constraint with elliptical shape, representing the effect of the turbine , are analyzed. Two geometric shapes in the transition region between the hydropneumatic chamber and the chimney OWC device, trapezoidal and semicircular, are also analyzed. Considering a two-dimensional domain the restrictions for this problem are: Elliptical restriction area (AR), Total area device (AT) and the ratio between the area of the elliptical restraint and the total area (ϕn). The considered degrees of freedom are: the ratio between the lengths of the axes (d1/d2) of the elliptical restraint, for the turbine’s physical constraint case, the inclination angle (α) of the wall for the trapezoidal transition case, and the radius (r) and H2/l (ratio between height and length of output chimney CAO) for the semicircular transition region case. For the numerical solution, a commercial code of computational fluid dynamics, FLUENT®, which is based on the Finite Volume Method (FVM), is employed. The multiphase model Volume of Fluid (VOF) is applied in the treatment of water-air interaction. The computational domain is represented by a wave tank with a fixed OWC device. The obtained results indicate that, for the study of the trapezoidal transition region, the performance of converter don’t seems to be compensatory only by changing the geometry of the trapezoidal area. However, for the semicircular transition region, it was possible to optimize a hydropneumatic power. The study of turbine effect indicates a geometry capable of converting the energy of the incident wave to the device, without obstructing the air flow in the chimney of de OWC, showing the relationship between the Constructal Design method and the wave climate in the definition of the dimensions that maximize the hydropneumatic power.
3

CFD optimisation of an oscillating water column wave energy converter

Horko, Michael January 2008 (has links)
Although oscillating water column type wave energy devices are nearing the stage of commercial exploitation, there is still much to be learnt about many facets of their hydrodynamic performance. This research uses the commercially available FLUENT computational fluid dynamics flow solver to model a complete OWC system in a two dimensional numerical wave tank. A key feature of the numerical modelling is the focus on the influence of the front wall geometry and in particular the effect of the front wall aperture shape on the hydrodynamic conversion efficiency. In order to validate the numerical modelling, a 1:12.5 scale experimental model has been tested in a wave tank under regular wave conditions. The effects of the front lip shape on the hydrodynamic efficiency are investigated both numerically and experimentally and the results compared. The results obtained show that with careful consideration of key modelling parameters as well as ensuring sufficient data resolution, there is good agreement between the two methods. The results of the testing have also illustrated that simple changes to the front wall aperture shape can provide marked improvements in the efficiency of energy capture for OWC type devices.
4

Aplicação do método Design Construtal na avaliação numérica da potência hidropneumática de um dispositivo coluna de água oscilante com região de transição trapezoidal ou semicircular e estudo da influência da turbina no formato elíptico

Lima, Yuri Theodoro Barbosa de January 2016 (has links)
A conversão da energia das ondas dos oceanos em energia elétrica é uma alternativa para o problema da falta de combustíveis fósseis. Uma das possibilidades de aproveitamento é através de dispositivos cujo princípio de funcionamento é o de Coluna de Água Oscilante (CAO). No presente trabalho o objetivo é, através da modelagem computacional e do emprego do Design Construtal, maximizar a potência hidropneumática de um dispositivo conversor de energia das ondas do mar do tipo CAO. São analisados diferentes eixos da restrição física, no formato elíptico, que representa a turbina, e duas formas geométricas na região de transição entre a câmara hidropneumática e a chaminé do dispositivo CAO: trapezoidal e semicircular. Considerando um domínio bidimensional, as restrições para estes problemas são: Área da restrição elíptica (AR), Área total do dispositivo (AT) e razão entre a área da restrição elíptica e a área total (ϕn). Os graus de liberdade analisados são: a razão entre os comprimentos dos eixos da restrição elíptica (d1/d2) para o caso da restrição física da turbina, o ângulo de inclinação da parede (α) para o caso com região de transição trapezoidal, o raio (r) e H2/l (razão entre altura e comprimento da chaminé de saída da câmara CAO) para o caso com região de transição semicircular. Para a solução numérica é empregado um código de dinâmica dos fluidos computacional, FLUENT®, baseado no Método de Volumes Finitos (MVF). O modelo multifásico Volume of Fluid (VOF) é aplicado no tratamento da interação água-ar. O domínio computacional é representado por um tanque de ondas com um dispositivo CAO acoplado. Os resultados obtidos indicam que, para o estudo da região de transição trapezoidal o desempenho do conversor tem aproximadamente o mesmo desempenho para todas as geometrias estudadas. A região de transição semicircular, apresenta resultados para os quais foi possível otimizar a potência hidropneumática. O estudo da turbina indica que foi possível determinar uma geometria capaz de converter a energia da onda incidente ao dispositivo, sem que ocorresse a obstrução do escoamento de ar na chaminé do dispositivo CAO. Assim, mostra-se a relação entre o método Design Construtal e o clima de ondas na definição das dimensões que maximizam a potência hidropneumática. / The conversion of ocean’s wave energy into electrical energy is an alternative for the scarcity of fossil fuels. One of the possibilities of energy use is through devices, whose operating principle is the Oscillating Water Column (OWC). In this work the aim is, through computer modeling and the Constructal Design, to maximize hydropneumatic power of a power converter device type OWC. Different axes of physical constraint with elliptical shape, representing the effect of the turbine , are analyzed. Two geometric shapes in the transition region between the hydropneumatic chamber and the chimney OWC device, trapezoidal and semicircular, are also analyzed. Considering a two-dimensional domain the restrictions for this problem are: Elliptical restriction area (AR), Total area device (AT) and the ratio between the area of the elliptical restraint and the total area (ϕn). The considered degrees of freedom are: the ratio between the lengths of the axes (d1/d2) of the elliptical restraint, for the turbine’s physical constraint case, the inclination angle (α) of the wall for the trapezoidal transition case, and the radius (r) and H2/l (ratio between height and length of output chimney CAO) for the semicircular transition region case. For the numerical solution, a commercial code of computational fluid dynamics, FLUENT®, which is based on the Finite Volume Method (FVM), is employed. The multiphase model Volume of Fluid (VOF) is applied in the treatment of water-air interaction. The computational domain is represented by a wave tank with a fixed OWC device. The obtained results indicate that, for the study of the trapezoidal transition region, the performance of converter don’t seems to be compensatory only by changing the geometry of the trapezoidal area. However, for the semicircular transition region, it was possible to optimize a hydropneumatic power. The study of turbine effect indicates a geometry capable of converting the energy of the incident wave to the device, without obstructing the air flow in the chimney of de OWC, showing the relationship between the Constructal Design method and the wave climate in the definition of the dimensions that maximize the hydropneumatic power.
5

Aplicação do método Design Construtal na avaliação numérica da potência hidropneumática de um dispositivo coluna de água oscilante com região de transição trapezoidal ou semicircular e estudo da influência da turbina no formato elíptico

Lima, Yuri Theodoro Barbosa de January 2016 (has links)
A conversão da energia das ondas dos oceanos em energia elétrica é uma alternativa para o problema da falta de combustíveis fósseis. Uma das possibilidades de aproveitamento é através de dispositivos cujo princípio de funcionamento é o de Coluna de Água Oscilante (CAO). No presente trabalho o objetivo é, através da modelagem computacional e do emprego do Design Construtal, maximizar a potência hidropneumática de um dispositivo conversor de energia das ondas do mar do tipo CAO. São analisados diferentes eixos da restrição física, no formato elíptico, que representa a turbina, e duas formas geométricas na região de transição entre a câmara hidropneumática e a chaminé do dispositivo CAO: trapezoidal e semicircular. Considerando um domínio bidimensional, as restrições para estes problemas são: Área da restrição elíptica (AR), Área total do dispositivo (AT) e razão entre a área da restrição elíptica e a área total (ϕn). Os graus de liberdade analisados são: a razão entre os comprimentos dos eixos da restrição elíptica (d1/d2) para o caso da restrição física da turbina, o ângulo de inclinação da parede (α) para o caso com região de transição trapezoidal, o raio (r) e H2/l (razão entre altura e comprimento da chaminé de saída da câmara CAO) para o caso com região de transição semicircular. Para a solução numérica é empregado um código de dinâmica dos fluidos computacional, FLUENT®, baseado no Método de Volumes Finitos (MVF). O modelo multifásico Volume of Fluid (VOF) é aplicado no tratamento da interação água-ar. O domínio computacional é representado por um tanque de ondas com um dispositivo CAO acoplado. Os resultados obtidos indicam que, para o estudo da região de transição trapezoidal o desempenho do conversor tem aproximadamente o mesmo desempenho para todas as geometrias estudadas. A região de transição semicircular, apresenta resultados para os quais foi possível otimizar a potência hidropneumática. O estudo da turbina indica que foi possível determinar uma geometria capaz de converter a energia da onda incidente ao dispositivo, sem que ocorresse a obstrução do escoamento de ar na chaminé do dispositivo CAO. Assim, mostra-se a relação entre o método Design Construtal e o clima de ondas na definição das dimensões que maximizam a potência hidropneumática. / The conversion of ocean’s wave energy into electrical energy is an alternative for the scarcity of fossil fuels. One of the possibilities of energy use is through devices, whose operating principle is the Oscillating Water Column (OWC). In this work the aim is, through computer modeling and the Constructal Design, to maximize hydropneumatic power of a power converter device type OWC. Different axes of physical constraint with elliptical shape, representing the effect of the turbine , are analyzed. Two geometric shapes in the transition region between the hydropneumatic chamber and the chimney OWC device, trapezoidal and semicircular, are also analyzed. Considering a two-dimensional domain the restrictions for this problem are: Elliptical restriction area (AR), Total area device (AT) and the ratio between the area of the elliptical restraint and the total area (ϕn). The considered degrees of freedom are: the ratio between the lengths of the axes (d1/d2) of the elliptical restraint, for the turbine’s physical constraint case, the inclination angle (α) of the wall for the trapezoidal transition case, and the radius (r) and H2/l (ratio between height and length of output chimney CAO) for the semicircular transition region case. For the numerical solution, a commercial code of computational fluid dynamics, FLUENT®, which is based on the Finite Volume Method (FVM), is employed. The multiphase model Volume of Fluid (VOF) is applied in the treatment of water-air interaction. The computational domain is represented by a wave tank with a fixed OWC device. The obtained results indicate that, for the study of the trapezoidal transition region, the performance of converter don’t seems to be compensatory only by changing the geometry of the trapezoidal area. However, for the semicircular transition region, it was possible to optimize a hydropneumatic power. The study of turbine effect indicates a geometry capable of converting the energy of the incident wave to the device, without obstructing the air flow in the chimney of de OWC, showing the relationship between the Constructal Design method and the wave climate in the definition of the dimensions that maximize the hydropneumatic power.
6

A facility for testing the aerodynamic and acoustic performance of bidirectional air turbines for ocean wave energy conversion

Moisel, Christoph, Carolus, Thomas 02 December 2019 (has links)
Bidirectional air turbines are used in oscillating water column (OWC) power plants for harnessing ocean wave energy. This paper describes the bidirectional aerodynamic and aero-acoustic facility at the University of Siegen for model air turbines performance testing. At least nine test facilities are known worldwide, but their layout, the performance testing procedure and the presentation of performance data are not standardized to this day. The layout of the facility at the University of Siegen follows ideas in ISO 5801 for fan performance testing. The pressurized air supply is bidirectional but steady-state. Achievable values of Reynolds and Mach number of the test turbines are 1,000,000 and 0.5, respectively. In addition, the facility is equipped with acoustic attenuators in the air supply for allowing synchronous determination of aerodynamic and acoustic characteristics of a turbine. A good practice guideline for turbine performance testing and presentation is proposed by showing full sets of non-dimensional aerodynamic and acoustic performance characteristics from two sample model turbines. Eventually, a comparison of in situ data from a full-scale turbine in transient operation with scaled up steady-state model performance measurements underlines the usefulness of steady-state model performance testing.

Page generated in 0.2814 seconds