• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 233
  • 62
  • 51
  • 40
  • 37
  • 8
  • 7
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 532
  • 86
  • 81
  • 80
  • 67
  • 63
  • 62
  • 60
  • 59
  • 54
  • 48
  • 46
  • 46
  • 44
  • 44
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Analysis and Design of Low-Jitter Oscillators

Fitzpatrick, Justin Jennings 16 March 2004 (has links) (PDF)
This thesis presents an examination of the jitter performance of different oscillator types in the presence of flicker noise, white noise and power supply noise. Key results are achieved using time domain simulations to determine cycle jitter of several different oscillator architectures, semiconductor processes and component features. In the end, a design procedure is developed for creating a low-jitter oscillator in a TSMC .25mm CMOS semiconductor process.
42

FM Threshold Performance of the Phase-Locked Oscillator

Geldart, Walter Joseph 05 1900 (has links)
<p> This thesis is principally concerned with the performance of the phase-locked FM demodulator under conditions of interference in comparison to the conventional FM demodulator. The linear no interference performance of the phase-locked oscillator is well known, however this aspect is included in the interests of completeness and reference.</p> <p> Mechanisms tor threshold effects in the phase-locked and conventional FM demodulator are discussed and compared. It is shown theoretically and experimentally that the noise threshold is reduced in the phase-locked FM demodulator by virtue of the limits of Ψi (t) being restricted by the noise bandwidth of' the feedback loop. Fall off in baseband signal level in the presence of noise was seen to be a function of θ(t) and (S/N)IF.</p> / Thesis / Master of Engineering (MEngr)
43

Phase Shift Approximation to Reaction Matrix Elements in an Oscillator Representation

Jopko, A. M. 09 1900 (has links)
<p> This thesis presents a derivation of a method to obtain two-body, diagonal and non-diagonal, reaction matrix elements for central and tensor forces respectively directly from nucleon-nucleon scattering phase shifts. This procedure eliminates the necessity for constructing a nuclear potential.</p> / Thesis / Master of Science (MSc)
44

Transient Stability of the Wien Bridge Oscillator

Skillen, Richard Prescott 05 1900 (has links)
In many Resistance-Capacitance Oscillators the oscillation amplitude is controlled by the use of a temperature-dependent resistor incorporated in the negative feedback loop. The use of thermistors and tungsten lamps is discussed and an approximate analysis is presented for the behaviour of the tungsten lamp. The result is applied in an analysis of the familiar Wien Bridge Oscillator both for the presence of a linear circuit and a cubic nonlinearity. The linear analysis leads to a highly unstable transient response which is uncommon to most oscillators. The inclusion of the slight cubic nonlinearity, however, leads to a result which is in close agreement to the observed response. / Thesis / Master of Engineering (MEngr)
45

Modeling and Estimation of Linear and Nonlinear Piezoelectric Systems

Paruchuri, Sai Tej 13 October 2020 (has links)
A bulk of the research on piezoelectric systems in recent years can be classified into two categories, 1) studies of linear piezoelectric oscillator arrays, 2) studies of nonlinear piezoelectric oscillators. This dissertation derives novel linear and nonlinear modeling and estimation methods for such piezoelectric systems. In the first part, this work develops modeling and design methods for Piezoelectric Subordinate Oscillator Arrays (PSOAs) for the wideband vibration attenuation problem. PSOAs offer a straightforward and low mass ratio solution to cancel out the resonant peaks in a host structure's frequency domain. Further, they provide adaptability through shunt tuning, which gives them the ability to recover performance losses because of structural parameter errors. This dissertation studies the derivation of governing equations that result in a closed-form expression for the frequency response function. It also analyzes systematic approaches to assign distributions to the nondimensional parameters in the frequency response function to achieve the desired flat-band frequency response. Finally, the effectiveness of PSOAs under ideal and nonideal conditions are demonstrated in this dissertation through extensive numerical and experimental studies. The concept of performance recovery, introduced in empirical studies, gives a measure of the PSOA's effectiveness in the presence of disorder before and after capacitive tuning. The second part of this dissertation introduces novel modeling and estimation methods for nonlinear piezoelectric oscillators. Traditional modeling techniques require knowledge of the structure as well as the source of nonlinearity. Data-driven modeling techniques used extensively in recent times build approximations. An adaptive estimation method, that uses reproducing kernel Hilbert space (RKHS) embedding methods, can estimate the underlying nonlinear function that governs the system's dynamics. A model built by such a method can overcome some of the limitations of the modeling approaches mentioned above. This dissertation discusses (i) how to construct the RKHS based estimator for the piezoelectric oscillator problem, (ii) how to choose kernel centers for approximating the RKHS, and (iii) derives sufficient conditions for convergence of the function estimate to the actual function. In each of these discussions, numerical studies are used to show the RKHS based adaptive estimator's effectiveness for identifying linearities in piezoelectric oscillators. / Doctor of Philosophy / Piezoelectric materials are materials that generate an electric charge when mechanical stress is applied, and vice versa, in a lossless transformation. Engineers have used piezoelectric materials for a variety of applications, including vibration control and energy harvesting. This dissertation introduces (1) novel methods for vibration attenuation using an array of piezoelectric oscillators, and (2) methods to model and estimate the nonlinear behavior exhibited by piezoelectric materials at very high mechanical forces or electric charges. Arrays of piezoelectric oscillators attached to a host structure are termed piezoelectric subordinate oscillator arrays (PSOAs). With the careful design of PSOAs, we show that we can reduce the vibration of the host structure. This dissertation analyzes methodologies for designing PSOAs and illustrates their vibration attenuation capabilities numerically and experimentally. The numerical and experimental studies also illustrate the robustness of PSOAs. In the second part of this dissertation, we analyze reproducing kernel Hilbert space embedding methods for adaptive estimation of nonlinearities in piezoelectric systems. Kernel methods are extensively used in machine learning, and control theorists have studied adaptive estimation of functions in finite-dimensional spaces. In this work, we adapt kernel methods for adaptive estimation of functions in infinite-dimensional spaces that appear while modeling piezoelectric systems. We derive theorems that ensure convergence of function estimates to the actual function and develop algorithms for careful selection of the kernel basis functions.
46

A VHF/UHF Voltage Controlled Oscillator in 0.5um BiCMOS

Bosley, Ryan Travis 08 April 2003 (has links)
The dramatic increase in market demand for wireless products has inspired a trend for new designs. These designs are smaller, less expensive, and consume less power. A natural result of this trend has been the push for components that are more highly integrated and take up less real estate on the printed circuit board (PCB). Major efforts are underway to reduce the number of integrated circuits (ICs) in newer designs by incorporating several functions into a single chip. Availability of newer technologies such as silicon bipolar with complementary metal oxide semiconductor (BiCMOS) has helped facilitate this move toward more complex circuit topologies onto one die. BiCMOS achieves efficient chip area utilization by combining bipolar transistors, suited for higher frequency analog circuits with CMOS transistors that are useful for digital functions and lower frequency analog circuits. A voltage controlled oscillator (VCO) is just one radio frequency (RF) circuit block that can benefit from a more complex semiconductor process like BiCMOS. This thesis presents the design and evaluation of an integrated VCO in the IBM 5S BiCMOS process. IBM 5S is a 0.5 um, single poly, five-metal process with surface channel PFETs and NFETs. The process also features self-aligned extrinsic base NPN bipolar devices exhibiting ft of up to 24 GHz. The objective of this work is to obtain a VCO design that provides a high degree of functionality while maximizing performance over environmental conditions. It is shown that an external feedback and resonator network as well as a bandgap voltage referenced bias circuit help to achieve these goals. An additional objective for this work is to highlight several pragmatic issues associated with designing an integrated VCO capable of high volume production. The Clapp variant of the Colpitts topology is selected for this application for reasons of robust operation, frequency stability, and ease of implementing in integrated form. Design is performed at 560 MHz using the negative resistance concept. Simulation results from Pspice and the Agilent ADS are presented. Implementation related issues such as bondwire inductances and layout details are covered. The VCO characterization is shown over several environmental conditions. The final nominal design is capable of: tuning over 150 MHz (22%) and delivering â 4.2 dBm into a 50 Ohm load while consuming only 9mA from a 3.0V supply. The phase noise at these conditions is -92.5 dBc/Hz at a frequency offset of 10 kHz from the carrier. Finally, the conclusion of this work lists some suggestions for potential future research. / Master of Science
47

Quantitative studies of mycobacterial single cell dynamics using a synthetic gene oscillator

Yu, Wen-Han 24 June 2024 (has links)
The gene regulatory interaction network of Mycobacterium tuberculosis (Mtb) has been mostly reconstructed, resulting in a huge step towards revealing complicated interconnections between the network and cellular responses. Nevertheless, the temporal dynamics of gene expression in the regulatory network still remain unclear. Such information importantly provides further understandings in cellular behaviors underlying the system in the presence of external stresses such as those from the host immune system and drug treatments. Here I applied an engineering-based approach to the new context of studying the Mtb temporal dynamical system by adding a synthetic perturbation system. To do so, I developed the first synthetic gene oscillator functioning as a circadian clock in mycobacteria based on a transcriptional control circuit. The circuit encodes differentially-activated positive and negative feedback regulators, which enable autonomous, self-sustained oscillatory gene expression with an average period of 4.5 hours. I modeled robustness and tunability of oscillation period and amplitude computationally and verified them experimentally. I also used this oscillatory circuit transcriptionally to regulate one of the transcription factors (KstR), and profiled in vivo temporal dynamics of KstR and KstR-regulated gene targets by dual-color fluorescence intensities in single Mycobacterium smegmatics cells. I observed bifunctionality (activation and repression) of KstR-regulated gene expression, and different gene targets exhibited differential, characteristic response times. This constituted a proof-of-concept that one can utilize a genetic oscillator to characterize dynamical regulation of transcription factors underlying a complex regulatory system. Additionally, it presents a potential new strategy for using dynamical system modeling to guide genetic engineering of mycobacteria for future therapeutic applications.
48

MEMS baserad referensoscillator / MEMS based reference oscillator

Hedestig, Joel January 2005 (has links)
The interest in tiny wireless applications raises the demand for an integrated reference oscillator with the same performance as the macroscopic quartz crystal reference oscillators. The main challenge of the thesis is to prove that it is possible to build a MEMS based oscillator that approaches the accuracy level of existing quartz crystal oscillators. The MEMS resonator samples which Philips provides are measured and an equivalent electrical model is designed for them. This model is used in the simulations of the Pierce oscillator and the transresistance amplifier oscillator that are evaluated in this thesis. Finally the Pierce oscillator is implemented in the A BCD2 process and manufactured at Philips Semiconductors in Nijmegen, The Netherlands. A test board, for measuring the Pierce oscillator together with a MEMS resonator or a quartz crystal resonator, is built. The Pierce oscillator is then measured with a quartz crystal resonator. In order to simulate the higher series resistance of the MEMS resonators a resistor is put in series with the quartz crystal. The Pierce oscillator is working with a series resistance of 1 kΩ. With higher series resistance the Pierce oscillator stops working. In circuit simulations the Pierce oscillator is working with a series resistance of about 5 kΩ in the MEMS resonator model. To be sure whether the Pierce oscillator has enough gain for the MEMS resonators, it needs to be measured with them. Temperature variations in the MEMS resonators need to be handled and the phase noise performance of the oscillator must be improved, in order for the MEMS based reference oscillator to be a successful replacement for the quartz crystal reference oscillator.
49

A Cross-Coupled Relaxation Oscillator with Accurate Quadrature Outputs

Peng, Shih-Hao 12 July 2006 (has links)
Because of IC technology evolution and the increase of market demand, the communication industry grows vigorously in recent years. The voltage-controlled oscillator plays a key role in the RF transceiver and provides oscillation signals needed for upconversin and downconvertion. Usually, we separate the signals into I/Q channels for modulation and demodulation in upconversin and downconvertion. Because the quality of the local oscillator influences the performance of communication system, designing a voltage-controlled oscillator that can provide two identical signals in accurate quadrature is necessary. In this thesis, a new quadrature voltage-controlled oscillator is presented. We use two identical relaxation oscillators with adjustable Schmitt triggers to construct the cross-coupled architecture. This oscillator has accurate ( <1¢X) and stable quadrature outputs which are independent of operating frequency and process variations. This oscillator circuit is fabricated in TSMC 0.35£gm CMOS Mixed-Signal process provided by National Chip Implementation Center (CIC). Our design is verified by simulation and measurement results.
50

Nonlinear Phase Based Control to Generate and Assist Oscillatory Motion with Wearable Robotics

January 2016 (has links)
abstract: Wearable robotics is a growing sector in the robotics industry, they can increase the productivity of workers and soldiers and can restore some of the lost function to people with disabilities. Wearable robots should be comfortable, easy to use, and intuitive. Robust control methods are needed for wearable robots that assist periodic motion. This dissertation studies a phase based oscillator constructed with a second order dynamic system and a forcing function based on the phase angle of the system. This produces a bounded control signal that can alter the damping and stiffens properties of the dynamic system. It is shown analytically and experimentally that it is stable and robust. It can handle perturbations remarkably well. The forcing function uses the states of the system to produces stable oscillations. Also, this work shows the use of the phase based oscillator in wearable robots to assist periodic human motion focusing on assisting the hip motion. One of the main problems to assist periodic motion properly is to determine the frequency of the signal. The phase oscillator eliminates this problem because the signal always has the correct frequency. The input requires the position and velocity of the system. Additionally, the simplicity of the controller allows for simple implementation. / Dissertation/Thesis / Doctoral Dissertation Mechanical Engineering 2016

Page generated in 0.0397 seconds