• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Theoretical research on phase dynamics and information processing of neuronal rhythmical networks / リズムを有する神経ネットワークの位相のダイナミクスと情報処理に関する理論的研究

Terada, Yu 23 March 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(情報学) / 甲第20512号 / 情博第640号 / 新制||情||111(附属図書館) / 京都大学大学院情報学研究科複雑系科学専攻 / (主査)教授 青柳 富誌生, 教授 船越 満明, 教授 西村 直志 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
2

A study on the dynamical role of EEG phase for speech recognition / 音声認識における脳波位相のダイナミクスとその役割に関する研究

Onojima, Takayuki 26 March 2018 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(情報学) / 甲第21213号 / 情博第666号 / 新制||情||115(附属図書館) / 京都大学大学院情報学研究科先端数理科学専攻 / (主査)講師 青柳 富誌生, 教授 西村 直志, 准教授 田口 智清, 講師 水原 啓暁 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
3

Robust Stationary Time and Frequency Synchronization with Integrity in Support of Alternative Position, Navigation, and Timing

Smearcheck, Matthew A. 13 June 2013 (has links)
No description available.
4

Study of Non-Equilibrium Flow Behind Normal Shock

Malik, Bijoy Kumar January 2014 (has links)
Normal shock problems in high enthalpy flows are of special interests to aerodynamicists and fluid dynamicists. When the shock Mach number become hypersonic and increasing further, the gas passing through the shock is compressed resulting in increase in temperature and pressure. As the Mach number increases the internal degrees of freedom of the diatomic molecules are activated to an increasing extent when it crosses the shock resulting dissociation especially for high enthalpy flows. Hence dissociation of diatomic molecules must be taken into account in the determination of some of the aerodynamic parameters. This thermal and chemical process can be divided into three types such as nearly frozen, non-equilibrium and nearly non-equilibrium depending on the rates of reaction and excitation. For typical re-entry conditions of spacecrafts into a planets atmosphere, dissociation reactions of the molecules is dominant in the stagnation flow. Further in the stagnation region of the flow field one of the most important parameter that characterizes the flow field is the shock stand-off distance. This parameter is often employed for validation purposes of numerical methods as well as for non-reactive and reactive gases. For high Mach number flows the shock is very close to the body hence experimental determination of shock stand-off distance is very difficult and there would be relatively large errors. Therefore the theoretical determination of this parameter is of great significance in the discussion of this physical phenomenon. There are some works which presents how the dissociation behind shock affects the shock stand-off distance. Thus the dissociation behind the shock is a very important process which has great impact in aerodynamic flight and design. In this present work we studied how dissociation of diatoms occur behind a normal shock. Treanor and Marrone (1962) proposed CVD(coupled vibration-dissociation) model for diatoms by assuming diatom as a harmonic oscillator with a cut-off level. But actually diatoms are not harmonic oscillator, because spectroscopic data of energy level spacing is not like harmonic oscillator. For this reason, Treanor, Rich, and Rehm(1968) used anharmonic oscillator model for diatoms to study vibrational relaxation. Taking the anharmonicity of diatom, Philip Morse(1929) gave a formula for potential energy levels for diatoms, which is known to express the experimental values quite accurately. Unlike the energy levels of the harmonic oscillator potential, which are evenly spaced , the Morse potential level spacing decreases as the energy approaches the dissociation energy and then it is continuous. So it is quite accurate to take Morse oscillator theory for diatomic dissociation instead of harmonic oscillator with a cut-off level. We have used Morse oscillator theory to derive a dissociation-recombination reaction rate equation for diatom. To derive the rate equation we have used the transition probability between different vibrational energy levels . The rate equation is numerically solved to get the different flow variables behind the shock. The result of the present work has been compared with some of the previous work. Some of the flow variables are well matching with the previous work and some has discrepancy near the shock but well matching after few distance from the shock. We have also studied under what conditions the post shock flow shows self-similar behavior in its scaling relations. It is shown that as far as there is no dissociation, we could expect to obtain self-similar solutions. However, when there is dissociation, the non-equillibrium nature of the phenomenon disrupts the self-similar nature of the flow.
5

Zeitwahrnehmung in isochronen Sequenzen / Ein Vergleich verschiedener Modelle zum Einfluss des Kontextes auf die Wahrnehmungsleistung / Time perception in isochronous sequences / Comparing different models and their predictions on the influence of context on discrimination performance

Blaschke, Stefan 14 July 2009 (has links)
No description available.

Page generated in 0.063 seconds