Spelling suggestions: "subject:"oscillator shear stress""
1 |
Cellular Events Under Flow States Pertinent to Heart Valve FunctionCastellanos, Glenda L 12 November 2015 (has links)
Heart valve disease (HVD) or a damaged valve can severely compromise the heart's ability to pump efficiently. Balloon valvuloplasty is preferred on neonates with aortic valve stenosis. Even though this procedure decreases the gradient pressure across the aortic valve, restenosis is observed soon after balloon intervention. Tissue engineering heart valves (TEHV), using bone marrow stem cells (BMSCs) and biodegradable scaffolds, have been investigated as an alternative to current non-viable prosthesis. By observing the changes in hemodynamics following balloon aortic valvuloplasty, we could uncover a potential cause for rapid restenosis after balloon intervention. Subsequently, a tissue engineering treatment strategy based on BMSC mechanobiology could be defined. Understanding and identifying the mechanisms by which cytoskeletal changes may lead to cellular differentiation of a valvular phenotype is a first critical step in enhancing the promotion of a robust valvular phenotype from BMSCs.
|
2 |
The Oscillatory Shear Index: Quantifications for Valve Tissue Engineering and a Novel Interpretation for CalcificationWilliams, Alex 29 June 2018 (has links)
Heart valve tissue engineering (HVTE) stands as a potential intervention that could reduce the prevalence of congenital heart valve disease in juvenile patients. Prior studies in our laboratory have utilized mechanobiological testing to quantify the forces involved in the development of heart valve tissue, utilizing a Flow-Stretch-Flexure (FSF) bioreactor to condition bone marrow stem cells (BMSCs)-derived valve tissue. Simulations have demonstrated that certain sets of flow conditions can introduce specific levels of oscillatory shear stress (OSS)-induced stimuli, augmenting the growth of engineered valves as well as influencing collagen formation, extracellular matrix (ECM) composition and gene expression. The computational findings discussed in this thesis outline the methods in which flow conditions, when physiologically relevant, induce specific oscillatory shear stresses which could not only lead to an optimized valve tissue phenotype (at 0.18≤ OSI≤ 0.23), but could identify native valve tissue remodeling indicative of aortic valve disease.
|
Page generated in 0.0696 seconds