Spelling suggestions: "subject:"actin filament""
1 |
Actin and microtubule networks contribute differently to cell response for small and large strainsKubitschke, Hans, Schnauß, Jörg, Nnetu, Kenechukwu David, Warmt, Enrico, Stange, Roland, Käs, Josef A. 25 April 2023 (has links)
Cytoskeletal filaments provide cells with mechanical stability and organization. The main key players
are actin filaments and microtubules governing a cell’s response to mechanical stimuli. We
investigated the specific influences of these crucial components by deforming MCF-7 epithelial cells at
small(5% deformation) and large strains(>5% deformation). To understand specific contributions
of actin filaments and microtubules, we systematically studied cellular responses after treatment with
cytoskeleton influencing drugs. Quantification with the microfluidic optical stretcher allowed
capturing the relative deformation and relaxation of cells under different conditions. We separated
distinctive deformational and relaxational contributions to cell mechanics for actin and microtubule
networks for two orders of magnitude of drug dosages. Disrupting actin filaments via latrunculin A,
for instance, revealed a strain-independent softening. Stabilizing these filaments by treatment with
jasplakinolide yielded cell softening for small strains but showed no significant change at large strains.
In contrast, cells treated with nocodazole to disrupt microtubules displayed a softening at large strains
but remained unchanged at small strains. Stabilizing microtubules within the cells via paclitaxel
revealed no significant changes for deformations at small strains, but concentration-dependent
impact at large strains. This suggests that for suspended cells, the actin cortex is probed at small strains,
while at larger strains; the whole cell is probed with a significant contribution from the microtubules
|
2 |
Exploring the mechanical properties of filamentous proteins and their homologs by multiscale simulationsTheisen, Kelly E. January 2013 (has links)
No description available.
|
3 |
On the depolymerization of actin filamentsNiedermayer, Thomas January 2012 (has links)
Actin is one of the most abundant and highly conserved proteins in eukaryotic cells. The globular protein assembles into long filaments, which form a variety of different networks within the cytoskeleton. The dynamic reorganization of these networks - which is pivotal for cell motility, cell adhesion, and cell division - is based on cycles of polymerization (assembly) and depolymerization (disassembly) of actin filaments. Actin binds ATP and within the filament, actin-bound ATP is hydrolyzed into ADP on a time scale of a few minutes. As ADP-actin dissociates faster from the filament ends than ATP-actin, the filament becomes less stable as it grows older. Recent single filament experiments, where abrupt dynamical changes during filament depolymerization have been observed, suggest the opposite behavior, however, namely that the actin filaments become increasingly stable with time. Several mechanisms for this stabilization have been proposed, ranging from structural transitions of the whole filament to surface attachment of the filament ends.
The key issue of this thesis is to elucidate the unexpected interruptions of depolymerization by a combination of experimental and theoretical studies. In new depolymerization experiments on single filaments, we confirm that filaments cease to shrink in an abrupt manner and determine the time from the initiation of depolymerization until the occurrence of the first interruption. This duration differs from filament to filament and represents a stochastic variable. We consider various hypothetical mechanisms that may cause the observed interruptions. These mechanisms cannot be distinguished directly, but they give rise to distinct distributions of the time until the first interruption, which we compute by modeling the underlying stochastic processes. A comparison with the measured distribution reveals that the sudden truncation of the shrinkage process neither arises from blocking of the ends nor from a collective transition of the whole filament. Instead, we predict a local transition process occurring at random sites within the filament.
The combination of additional experimental findings and our theoretical approach confirms the notion of a local transition mechanism and identifies the transition as the photo-induced formation of an actin dimer within the filaments. Unlabeled actin filaments do not exhibit pauses, which implies that, in vivo, older filaments become destabilized by ATP hydrolysis.
This destabilization can be identified with an acceleration of the depolymerization prior to the interruption. In the final part of this thesis, we theoretically analyze this acceleration to infer the mechanism of ATP hydrolysis. We show that the rate of ATP hydrolysis is constant within the filament, corresponding to a random as opposed to a vectorial hydrolysis mechanism. / Aktin ist eines der am häufigsten vorkommenden und am stärksten konservierten Proteine in eukaryotischen Zellen. Dieses globuläre Protein bildet lange Filamente, die zu einer großen Vielfalt von Netzwerken innerhalb des Zellskeletts führen. Die dynamische Reorganisation dieser Netzwerke, die entscheidend für Zellbewegung, Zelladhäsion, und Zellteilung ist, basiert auf der Polymerisation (dem Aufbau) und der Depolymerisation (dem Abbau) von Aktinfilamenten. Aktin bindet ATP, welches innerhalb des Filaments auf einer Zeitskala von einigen Minuten in ADP hydrolysiert wird. Da ADP-Aktin schneller vom Filamentende dissoziiert als ATP-Aktin, sollte ein Filament mit der Zeit instabiler werden. Neuere Experimente, in denen abrupte dynamische Änderungen während der Filamentdepolymerisation beobachtet wurden, deuten jedoch auf ein gegenteiliges Verhalten hin: Die Aktinfilamente werden mit der Zeit zunehmend stabiler. Mehrere Mechanismen für diese Stabilisierung wurden bereits vorgeschlagen, von strukturellen Übergängen des gesamten Filaments bis zu Wechselwirkungen der Filamentenden mit dem experimentellen Aufbau.
Das zentrale Thema der vorliegenden Dissertation ist die Aufklärung der unerwarteten Unterbrechungen der Depolymerisation. Dies geschieht durch eine Kombination von experimentellen und theoretischen Untersuchungen. Mit Hilfe neuer Depolymerisationexperimente mit einzelnen Filamenten bestätigen wir zunächst, dass die Filamente plötzlich aufhören zu schrumpfen und bestimmen die Zeit, die von der Einleitung der Depolymerisation bis zum Auftreten der ersten Unterbrechung vergeht. Diese Zeit unterscheidet sich von Filament zu Filament und stellt eine stochastische Größe dar. Wir untersuchen daraufhin verschiedene hypothetische Mechanismen, welche die beobachteten Unterbrechungen verursachen könnten. Die Mechanismen können experimentell nicht direkt unterschieden werden, haben jedoch verschiedene Verteilungen für die Zeit bis zur ersten Unterbrechung zur Folge. Wir berechnen die jeweiligen Verteilungen, indem wir die zugrundeliegenden stochastischen Prozesse modellieren. Ein Vergleich mit der gemessenen Verteilung zeigt, dass der plötzliche Abbruch des Depolymerisationsprozesses weder auf eine Blockade der Enden, noch auf einen kollektiven strukturellen Übergang des gesamten Filaments zurückzuführen ist. An Stelle dessen postulieren wir einen lokalen Übergangsprozess, der an zufälligen Stellen innerhalb des Filaments auftritt.
Die Kombination von weiteren experimentellen Ergebnissen und unserem theoretischen Ansatz bestätigt die Vorstellung eines lokalen Übergangsmechanismus und identifiziert den Übergang als die photo-induzierte Bildung eines Aktindimers innerhalb des Filaments. Nicht fluoreszenzmarkierte Aktinfilamente zeigen keine Unterbrechungen, woraus folgt, dass ältere Filamente in vivo durch die ATP-Hydrolyse destabilisiert werden.
Die Destabilisierung zeigt sich durch die Beschleunigung der Depolymerisation vor der Unterbrechung. Im letzten Teil der vorliegenden Arbeit untersuchen wir diese Beschleunigung mit theoretischen Methoden, um auf den Mechanismus der ATP-Hydrolyse zu schließen. Wir zeigen, dass die Hydrolyserate von ATP innerhalb des Filaments konstant ist, was dem sogenannten zufälligen Hydrolysemechanismus entspricht und im Gegensatz zum sogenannten vektoriellen Mechanismus steht.
|
4 |
Das Zytoskelett der EndothelzelleMühle, Hans-Werner 16 January 2004 (has links)
F-Aktin spielt eine wichtige Rolle bei der Steuerung der endothelialen Barrierefunktion. In dieser Arbeit verwendeten wir Colchicin, Vinca-Alkaloide (Vinblastin, Vincristin) und Paclitaxel um Mikrotubulussysteme (MT) auszulenken und den Effekt auf die Permeabilität zu untersuchen. Endothelzellen wurden auf Polycarbonatfiltermembranen gepflanzt und einem kontinuierlichen hydrostatischen Druck von 10 cm H2O ausgesetzt. Die Exposition von Endothelzell-Monolayern gegenüber Colchicin und Vinca-Alkaloiden führte innerhalb von 60 100 Minuten zeit- und dosisabhängig zu einem fünf zehnfachen Anstieg der hydraulischen Konduktivität. Dagegen war nach MT-Stabilisation durch Paclitaxel keine Permeabilitätszunahme festzustellen. Doppelimmunfluoreszenz-Mikroskopie zeigte, dass die MT-Depolymerisation durch Colchicin und Vinca Alkaloide zu F-Aktin-Umverteilung, Stressfaserbildung und Zellretraktionen mit ausgeprägter parazellulärer Lücken-Bildung führt. Diese Phänomene wurden durch Kombinationen von Vinblastin und Paclitaxel deutlich abgeschwächt. Die fluorometrische Messung des intrazellulären F-Aktins nach MT-Depolymerisation durch Vinblastin resultierte in einer signifikanten Zunahme der Aktinfilamente. Auf der anderen Seite resultierte F-Aktin Abbau durch Cytochalasin D und Clostridium difficile (TcdB-10463) morphologisch nicht in einer Veränderung von MT-Strukturen. Dabei zeigten in Interzellularbrücken gelegene MT-Filamente Kolokalisation mit F-Aktin Fragmenten. Unsere Ergebnisse demonstrieren, dass MT-Systeme an der Regulation der endothelialen Barriere beteiligt sind. Darüber hinaus verdeutlichen die Resultate eine enge Bindung von MT- und Aktin-Filamenten innerhalb endothelzellulärer Adhäsionskontakte. / The endothelian cytosceleton plays an important role in the regulation of endothelial permeability via cellular actin filaments. We tested the effect of agents known to perturb cellular microtubules on the permeability of endothelial cell monolayers. The agents chosen were colchicine, the vinca alkaloids vinblastine and vincristine and paclitaxel. Cell monolayers were prepared on polycarbonate filter membranes and exposed to a continuous hydrostatic pressure of 10 cm H2O. Colchicine and the vinca alkaloids caused a five to tenfold increase in the hydraulic conductivity of the monolayers within 60 100 min. The effect was dose and time dependent. The microtubule stabilizer paclitaxel caused no increase in permeability. Double-immunofluorescence microscopy showed that microtubule depolymerisation was associated with certain morphological features such as inter-endothelial gaps, cell retraction, f-actin reorganisation and some stressfibre appearance. These phenomena were significantly reduced when vinblastine and paclitaxel were combined. Measurement of intracellular f-actin following microtubule inhibition with vinblastine showed a significant increase in endothelial actin filaments. No changes in microtubule structures were seen when actin filaments were perturbed with cytochalasin D and Clostridium difficile (TcdB-10463). However, in this case the intercellular bridges showed that microtubules were co-localised with fragments of actin filaments from neighbouring cells. Our data demonstrate that microtubules are important for the regulation of endothelial permeability. Moreover, our results support evidens of binding between microtubules and actin filaments within endothelial cell adhesion contacts.
|
5 |
Cellular Events Under Flow States Pertinent to Heart Valve FunctionCastellanos, Glenda L 12 November 2015 (has links)
Heart valve disease (HVD) or a damaged valve can severely compromise the heart's ability to pump efficiently. Balloon valvuloplasty is preferred on neonates with aortic valve stenosis. Even though this procedure decreases the gradient pressure across the aortic valve, restenosis is observed soon after balloon intervention. Tissue engineering heart valves (TEHV), using bone marrow stem cells (BMSCs) and biodegradable scaffolds, have been investigated as an alternative to current non-viable prosthesis. By observing the changes in hemodynamics following balloon aortic valvuloplasty, we could uncover a potential cause for rapid restenosis after balloon intervention. Subsequently, a tissue engineering treatment strategy based on BMSC mechanobiology could be defined. Understanding and identifying the mechanisms by which cytoskeletal changes may lead to cellular differentiation of a valvular phenotype is a first critical step in enhancing the promotion of a robust valvular phenotype from BMSCs.
|
Page generated in 0.0863 seconds