131 |
Optimisation of design and operating parameters of reverse osmosis process for the removal of phenol from wastewaterKhan, Shamraze, Al-Obaidi, Mudhar A.A.R., Kara-Zaitri, Chakib, Mujtaba, Iqbal 18 October 2022 (has links)
Yes / Reverse Osmosis (RO) is widely used for separating organic and inorganic pollutants in wastewater. In this research, the one-dimensional steady state model of a spiral wound RO for the removal of phenol from wastewater, was simulated using gPROMS software to identify optimal design and operating parameters. The design parameters included the membrane length, width and feed spacer channel and operating conditions included temperature and pressure of the RO process. The optimal design parameters were able to maximise the removal of phenol from wastewater. The simulation results showed that the removal of phenol from wastewater was significantly influenced by the combination of membrane width, operating pressure, and feed temperature. The four main parameters (permeate concentration, solute flow, solute rejection, and water flux) that govern the performance of a reverse osmosis membrane were found to be influenced by the design and operating conditions.
|
132 |
Simulation of boron rejection by seawater reverse osmosis desalinationPatroklou, G., Sassi, Kamal M., Mujtaba, Iqbal January 2013 (has links)
yes / Boron is a vital element for growth of creations, but excessive exposure can cause detrimental effects to plants,
animals, and possibly humans. Reverse Osmosis (RO) technique is widely used for seawater desalination as well
as for waste water treatment. The aim of this study is to identify how different operating parameters such as pH,
temperature and pressure can affect boron concentrations at the end of RO processes. For this purpose, a
mathematical model for boron rejection is developed based on solution-diffusion model which can describe
solvent and solute transport mechanism through the membranes. After a wide and thorough research, empirical
correlations developed in the past are filtered, adopted and calibrated in order to faction with reliability as part of
the solution-diffusion model of this work. The model is validated against a number of experimental results from the
literature and is used in further simulations to get a deeper insight of the RO process. The general findings of the
boron rejection model are supporting the case that with increasing pH and operating pressure of the feed water,
the boron rejection increases and with increasing feed water temperature the boron rejection decreases.
|
133 |
Ultrasonic-time-domain-reflectometry as a real time non-destructive visualisation technique of concentration polarisation and fouling on reverse osmosis membranesKoen, Louis Johannes 12 1900 (has links)
Thesis (MEng)--Stellenbosch University, 2000. / ENGLISH ABSTRACT: Fouling is readily acknowledged as one of the most critical problems limiting the
wider application of membranes in liquid separation processes. A better
understanding of fouling layer formation and its monitoring is needed in order to
improve on existing cleaning techniques. Plant operation can be optimised if fouling
can be monitored by noninvasion means either on the plant itself or on an attached
monitoring device.
The overall scope of this research was to develop a non-destructive, real-time, in situ
visualisation technique or device for concentration polarisation and fouling layer
monitoring. Ultrasonic-time-domain-reflectometry (UTDR) was employed as a
visualisation technique to provide real-time characterisation of the fouling layer.
A 24 cm-long rectangular flat sheet aluminium cell was designed and used as
separation device for a desalination system. The experimental results obtained using
this module confirmed that there are an excellent correspondence between the flux
decline behaviour and the UTDR response from the membrane. The ultrasonic
technique could effectively detect fouling layer initiation and growth on the
membrane in real-time. In addition to the measurement of fouling, the ultrasonic
technique was also successfully employed for monitoring membrane cleaning. Since
no real-time permeation data is available during cleaning operations in industrial
applications, a UTDR monitoring device may prove to be a very valuable technique
in optimising cleaning strategies.
The technique was further tested on an 8-inch diameter spiral wrap industrial
module and good results were obtained. Stagnant zones, as well as flux flow
behaviour inside the module could be determined. However, more research IS
needed to fully understand the complex phenomena inside a spiral wrap module.
Overall, the UTDR technique and its use in monitoring devices have a major impact
in the membrane industry due to its extremely powerful capabilities. / AFRIKAANSE OPSOMMING: Membraan-bevuiling of -verstopping is die grootste struikelblok wat die algemene
aanwending van membrane vir verskillende watersuiweringsprosesse negatief
beinvloed. 'n Beter begrip van membraan-bevuiling, asook beter metingsmetodes
daarvan is nodig om op bestaande skoonmaaktegnieke te verbeter.
Die hoofdoel van hierdie studie was die ontwikkeling van 'n nie-destruktiewe-in-lyn
visuele tegniek vir die meting van konsentrasie polarisasie en membraan-bevuiling.
Deur gebruik te maak van ultrasoniese klank golwe, is 'n tegniek ontwikkel wat 'n
direkte visuele aanduiding kon gee van die toestand van membraan-bevuiling binnein
die module.
'n Reghoekige aluminium-module, 24 cm lank, is ontwerp en gebou waarbinne die
membraan geplaas is vir die skeidingsproses. Resultate dui daarop dat daar 'n
uitstekende verband bestaan tussen die afname in permeaatvloei en die ultrasoniese
eggo vanaf die membraan. Die ultrasoniese tegniek kon die vorming van en toename
in membraan-bevuiling doeltreffend karakteriseer. In teenstelling hiermee, is die
tegniek ook suksesvol aangewend om die skoonmaak-proses van membrane te
ondersoek. Met min of geen data beskikbaar vir die skoonmaak-proses van
membrane in die industriële sektor, het die tegniek enorme potensiaal in die
optimisering van bestaande skoonmaak-tegnieke.
Die tegniek is verder aangewend op 'n industriële 8-duim deursnee spiraal-module
en goeie resultate is verkry. Stagnante sones asook vloed-vloei-patrone binne-in die
module kon suksesvol bepaal word. Baie navorsing is egter nog nodig om die
ingewikkelde data wat gegenereer word tydens die ondersoek van 'n spiraal-module
ten volle te verstaan.
Die enorme potensiaal en moontlikhede van die ultrasoniese tegniek kan die begin
wees van 'n revolusie in die membraan-industrie.
|
134 |
Efficiency improvements for small-scale reverse-osmosis systemsSusanto-Lee, Robertus January 2006 (has links)
The water supplies of some small inland communities may come in the form of river systems that offer brackish water. Not fit for immediate human consumption, the water can be further processed using reverse osmosis to be converted into drinking water.In very remote areas there are limited energy resources, and for those areas that lie beyond a municipal distribution grid, renewable energy sources may be used. A reverse osmosis system that operates from the limited power generated by a renewable energy system must do so with the utmost of efficiency. Three methods in improving the efficiency of small-scale reverse-osmosis system are investigated, namely high-pressure pump speed control, feed water heating and vacuum pump based energy recovery.
|
135 |
Removal of N-nitrosamine by Nanofiltration and Reverse Osmosis MembranesMiyashita, Yu 09 April 2007 (has links)
The rejections of selected N-nitrosamines by commonly used high-pressure nanofiltration (NF) and reverse osmosis (RO) membranes were quantitatively evaluated using a bench-scale cross-flow filtration apparatus. The selected nitrosamines included N-nitrosodimethylamine (NDMA), N-nitrosomethylethylamine (NMEA), N-nitrosopyrrolidine (NPYR), N-nitrosodiethylamine (NDEA), N-nitrosodi-n-propylamine (NDPA), N-nitrosodi-n-butylamine (NDBA) and N-nitrosodiphenylamine (NDPHA). Nitrosamine rejections were evaluated under steady state at elevated feed concentrations, since NDMA rejections were found to be consistent with feed concentrations over three orders of magnitude. The steady-state nitrosamine rejections by NF membranes varied significantly, from 9 to 75%, depending on nitrosamine compounds and tested membranes. For hydrophilic compounds, rejections increased with increasing molecular weight. The nitrosamine rejections by brackish RO membranes reached as high as 97% for higher molecular weight nitrosamines. However, for low molecular weight nitrosamines such as NDMA, rejections as low as 54% were observed. This low level of rejections was attributed to diffusive solute transport being more effective than convective transport. Physicochemical properties such as molecular weight and aqueous diffusivity showed reasonable correlations with nitrosamine permeability constants.
|
136 |
The removal of pesticides and heavy metals by reverse osmosisChong, Brian S. H. 18 April 2009 (has links)
In the past few years, the contamination by pesticides and heavy metals in surface water and groundwater has increased. Reverse osmosis is a unit process that has demonstrated capacity to remove dissolved pesticides and heavy metals from aqueous solution, and it is therefore worthwhile to consider this treatment process as a potential removal technique for hazardous constituents.
The purpose of this investigation was to determine the effectiveness of a field scale reverse osmosis unit, with a spiral wound poly(ether/urea) membrane, in removing pesticides and heavy metals from a contaminated source. The removal efficiency for a single contaminant alone and a part of a mixture was examined. The performance of new and used membranes over time was also investigated.
The average removal of pesticides was better than 99 percent. Reverse osmosis separation of pesticides was found to be dependent on the characteristics of the membrane and the physical/chemical properties of the pesticides. Pesticides in the mixed solution were found to behave independently. Sorption of the pesticides onto the reverse osmosis membrane was found to play a major role in the overall removal efficiency.
Better than 99 percent average removal was achieved for all the metals except arsenic. The importance of the physical/chemical properties of the metal ions such as solubility, ionic radius, and electronegativity were determined. In tests to compare removal efficiency between new membrane and membrane which had been used, virtually no differences occurred. / Master of Science
|
137 |
Development and Validation of N-nitrosamine Rejection Mathematical Model Using a Spiral-wound Reverse Osmosis ProcessAl-Obaidi, Mudhar A.A.R., Kara-Zaitri, Chakib, Mujtaba, Iqbal January 2016 (has links)
Yes / In this paper, a one-dimensional mathematical model based on coupled differential and algebraic equations
has been developed for analysing the separation mechanism of a N-nitrosamine in a spiral-wound reverse
osmosis process. The model is based on Spiegler and Kedem’s work on mass transport and Darcy’s law and
concentration polarization to analyse the pressure drop and mass transfer coefficient in the module feed
channel respectively. The model is built using the gPROMS software suite and validated using N-nitrosamine
rejection experimental data from the literature, obtained by using a pilot-scale cross-flow reverse osmosis
filtration system. Analysis results derived from the model corroborate experimental data.
|
138 |
Optimal reverse osmosis network configuration for the rejection of dimethylphenol from wastewaterAl-Obaidi, Mudhar A.A.R., Kara-Zaitri, Chakib, Mujtaba, Iqbal 25 October 2017 (has links)
Yes / Reverse osmosis (RO) has long been recognised as an efficient separation method for treating and removing harmful pollutants, such as dimethylphenol in wastewater treatment. This research aims to study the effects of RO network configuration of three modules of a wastewater treatment system using a spiral-wound RO membrane for the removal of dimethylphenol from its aqueous solution at different feed concentrations. The methodologies used for this research are based on simulation and optimisation studies carried out using a new simplified model. This takes into account the solution-diffusion model and film theory to express the transport phenomena of both solvent and solute through the membrane and estimate the concentration polarization impact respectively. This model is validated by direct comparison with experimental data derived from the literature and which includes dimethylphenol rejection method performed on a small-scale commercial single spiral-wound RO membrane system at different operating conditions. The new model is finally implemented to identify the optimal module configuration and operating conditions that achieve higher rejection after testing the impact of RO configuration.
The optimisation model has been formulated to maximize the rejection parameters under optimal operating conditions of inlet feed flow rate, pressure and temperature for a given set of inlet feed concentration. Also, the optimisation model has been subjected to a number of upper and lower limits of decision variables, which include the inlet pressure, flow rate and temperature. In addition, the model takes into account the pressure loss constraint along the membrane length commensurate with the manufacturer’s specifications. The research clearly shows that the parallel configuration yields optimal dimethylphenol rejection with lower pressure loss.
|
139 |
Reverse osmosis transport phenomena in the presence of strong solute-membrane affinityDickson, James Morley January 1985 (has links)
The reverse osmosis performance of cellulose acetate membranes has been examined and analyzed for several aqueous systems where there is a strong attraction between the organic solute and the membrane material.
The systems investigated included the aromatic hydrocarbons benzene, toluene, and cumene in single-solute aqueous solutions. Six cellulose acetate membranes, modified by annealing at different temperatures, were studied.
Experiments were performed at four pressures (690, 1725, 3450, and 6900 kPa) and at several concentrations (in the range 5 to 260 ppm). The results were found to be markedly different than those observed in the absence of strong solute-membrane affinity. In particular, the solute-water separation decreased rather than increased with increasing pressure and the flux decreased with increasing concentration even though low concentrations, with low osmotic pressures, were studied. Qualitatively, the behavior was explained in terms of a porous membrane mechanism with both solute-membrane affinity and solute mobility varying as a function of solute position with respect to the membrane. The observed reduction in flux was expressed by an empirical equation as a function of concentration of solute in the boundary layer.
The experimental results were analyzed quantitatively by several transport models. The irreversible thermodynamics phenomenological transport, solution-diffusion imperfection and extended solution-diffusion relationships generated parameters that were inconsistent with the original formulations of the models. The irreversible thermodynamics Kedem-Spiegler model, solution diffusion model, Kimura-Sourirajan analysis, and the three parameter finely-porous model were functionally unable to represent the data. Only the four parameter finely-porous model and the surface force-pore flow model were consistent with experimental results. From the finely-porous model the partition coefficient was found to be different on the high and low pressure sides of the membrane and this difference was a function of both pore size and solute. For the surface force-pore flow model, the agreement between the model and data was excellent. However, the surface force-pore flow model was considerably more difficult to use. / Ph. D.
|
140 |
Thermodynamic optimisation of a boiler feed water desalination plant / Philippus Johannes van der WaltVan der Walt, Philippus Johannes January 2014 (has links)
In the process of electricity generation, water is used as the working fluid to transport energy from the fuel to the turbine. This water has to be ultrapure in order to reduce maintenance cost on the boilers.
For the production of ultrapure water, a desalination process is used. This process consists of an ultrafiltration pretreatment section, two reverse osmosis stages and a continuous electrodeionisation stage. Reverse osmosis desalination plants are, however, inherently inefficient with a high specific energy consumption. In an attempt to improve the efficiency of low recovery seawater applications, energy recovery devices are installed on the brine outlet of the reverse osmosis stages. The energy recovery device recovers the energy that is released through the high pressure brine stream and reintroduces it to the system.
The investigated desalination process has a fresh water feed with a salinity of 71 ppm and is operated at recoveries above 85%. The plant produces demineralised water at a salinity lower than 0.001ppm for the purpose of high pressure boiler feed.
A thermodynamic analysis determined the Second Law efficiencies for the first and second reverse osmosis sections as 3.85% and 3.68% respectively. The specific energy consumption for the reverse osmosis plants is 353 Wh/m3 and 1.31 Wh/m3. This was used as the baseline for the investigation. An exergy analysis determined that energy is lost through the brine throttling process and that a pressure exchanging system can be installed on all reverse osmosis brine streams. Energy recovery devices are untested in high recovery fresh water applications due to the low brine pressure and low brine flow.
It was determined that pressure exchanging systems can reduce the specific energy consumption of the first reverse osmosis stage with 12.2% whereas the second RO stage energy consumption can be improved with 7.7%. The Second Law efficiency can be improved by 25.6% for the first reverse osmosis stage while the efficiency is improved with 18.1% for the second stage. The optimal operating recovery for the PES is between 80% and 90%. / MIng (Chemical Engineering), North-West University, Potchefstroom Campus, 2015
|
Page generated in 0.0377 seconds